
A Live, Multiple-Representation Probabilistic Programming
Environment for Novices

Maria I. Gorinova1, Advait Sarkar1, Alan F. Blackwell1, Don Syme2

1Computer Laboratory, University of Cambridge
15 JJ Thomson Avenue, Cambridge, United Kingdom
{mig30,advait.sarkar,alan.blackwell}@cl.cam.ac.uk

2Microsoft Research Cambridge
Cambridge, UK

dsyme@microsoft.com

ABSTRACT
We present a live, multiple-representation novice environ-
ment for probabilistic programming based on the Infer.NET
language. When compared to a text-only editor in a con-
trolled experiment on 16 participants, our system showed a
significant reduction in keystrokes during introductory prob-
abilistic programming exercises, and subsequently, a signif-
icant improvement in program description and debugging
tasks as measured by task time, keystrokes and deletions.

Author Keywords
Probabilistic programming; visual languages; multiple
representation; computational thinking; development
environment

ACM Classification Keywords
H.5.m Information Interfaces and Presentation (e.g. HCI):
Miscellaneous; D.2.6 Software Engineering: Programming
Environments

INTRODUCTION
A new generation of probabilistic programming languages,
such as Infer.NET [12], manipulates variables which are as-
sociated not with single values, but rather entire probability
distributions. This is becoming a popular approach for data
analytics, as many statistical techniques are more naturally
expressed as probabilistic programs. In this paper, we report
the design and evaluation of a system that makes these capa-
bilities more accessible to students and end-user developers.

The conventional understanding that a variable holds only one
value has been suggested as the single most important con-
cept determining whether someone is able to learn program-
ming [6]. The conceptual model of probabilistic program-
ming, where variables embody distributions, involves a sub-
stantial shift from this convention. For example, consider a
random variable B whose distribution depends upon the value
of a random variable A. When B takes on a particular value,

© 2016 Advait Sarkar. This is the author’s version posted for personal use. Not for
redistribution. The definitive version is published in the proceedings of CHI 2016.
Permission to make copies of all or part of this work for personal or classroom use
is granted without fee unless made or distributed for profit or commercial advantage.
Copies must bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, republish, post on servers, or redistribute
to lists, request specific prior permissions from Permissions@acm.org.
CHI’16, May 07–12, 2016, San Jose, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3362-7/16/05$15.00
DOI: http://dx.doi.org/10.1145/2858036.2858221

our beliefs regarding the distribution of A are updated. Prob-
abilistic programming is a challenge not only because the no-
tion of a variable and its value is fundamentally different, but
also because changes are not always explicit; changing the
value of a variable affects those upon which it depends, in
addition to affecting those which depend upon it (as in con-
ventional languages).

Our concern was therefore to design a practical tool that suc-
cessfully communicates this different conceptual basis, while
also allowing users to successfully manipulate probabilis-
tic programs. Tutorials on graphical models and Bayesian
networks [13] typically explain the structure of the model
with a node-and-link diagram, where nodes represent random
variables, and links show conditional dependencies. When
Bayes’ theorem is introduced through visualisations, students
learn faster and report higher temporal stability [14]. Despite
the term “graphical,” many probabilistic programming lan-
guages describe models in purely textual terms, rather than in
diagrammatic form. This is no doubt due in part to the rela-
tive ease of building text parsers and compilers, but may also
have resulted from the relative lack of success for tools such
as UML, which become relatively inflexible through separate
phases of diagrammatic specification and code generation.

Programming environments exist that maintain multiple rep-
resentations on screen simultaneously, with modification of
one resulting in simultaneous modification of the others [15].
This approach has also been characterised in terms of “live-
ness” [17], and has recently been popularised in projects such
as Light Table [3]. Such research provides evidence for the
educational and practical potential of this strategy. In the re-
mainder of this paper we describe the first application of this
strategy to the design and evaluation of an integrated devel-
opment environment for live probabilistic programming.

This work makes the following contributions:

• We motivate probabilistic programming as an emerging
domain which can benefit from established diagrammatic
convention using live, multiple-representation editors.

• We present the design and implementation for a multiple-
representation environment (MRE) for probabilistic pro-
gramming aimed towards novices.

• We report a real-world comparative study of the effects of
an MRE on the effort of novice programmers during initial
practice and simple application tasks.

Figure 1: Our multiple-representation editor. Left to right: source code, Bayesian network diagram, posterior distribution charts.

PREVIOUS WORK
Previous work has largely focused on visualising graphical
models in a single-representation system. Bayesia [1] and
Netica [4] are both commercial tools that allow users to cre-
ate Bayesian networks interactively. However, these single-
representation systems do not expose the underlying code and
have restricted functionality due to their commercial focus.
ViSMod [18] is a similar system aimed towards students.
VIBES [5] and WinBUGS [11] both allow the user to de-
scribe a probabilistic model and perform inference on it. The
model in both cases is described by either XML script/BUGS
language or pictorially, via a graphical interface. However,
neither implements liveness or multiple representations. Tab-
ular [9] is a live probabilistic language which allows pro-
grams to be written as annotated relational schemas within
spreadsheets. While achieving liveness, its interface is purely
spreadsheet-based and does not provide visualisations.

Bayesian networks are useful visualisations of dependence
between variables, but are incomplete representations of the
problem, as they don’t represent the nature of dependencies
or priors. While the design for a complete visual language
for probabilistic programming is an intriguing avenue, our
aim was to help students better understand how the fully-
expressive code representation corresponds to concepts of
probability theory as learnt in the classroom. Thus, our solu-
tion is rooted in multiple representation theory [15], through
which existing novice knowledge scaffolds new concepts.

OUR MULTIPLE-REPRESENTATION ENVIRONMENT

Visual representation
Our interface (Figure 1) implements 3 panes: the first is a
standard source code editor. The second is a node-link di-
agram representing the graphical model according to stan-
dard convention. The third is a series of charts showing the

distributions of each random variable in the program. The
node-link diagram is laid out initially using the Sugiyama al-
gorithm [16]. Nodes can be freely moved after the visual-
isation is rendered. Nodes corresponding to observed vari-
ables are coloured blue. Array variables are shown as rect-
angles, as a compact alternative to the standard plate notation
[7]. Tooltips on each node show the exact parameterised dis-
tribution. Hovering over a node highlights the correspond-
ing variable definition in the source pane (Figure 1). Fu-
ture work may introduce bidirectional navigation [8]. Poste-
rior distributions for inferred variables are visualised in the
rightmost pane. Note that only the code is editable; the
graph/distributions are not. This is potential future work and
our graph-to-code navigation is a step in this direction.

A progress bar appears during compilation and rendering.
The visualisation is dimmed through a translucent overlay
during recompilation to indicate staleness. Finally, a console
at the bottom displays compilation/type-checking error mes-
sages, as well as the output of print statements.

Liveness
We use the F# Compiler Services package [2] to parse the
user’s program and walk the typed abstract syntax tree. Our
implementation supports visualisation of top-level declara-
tions in single-sourcefile programs. We inject infer state-
ments to obtain the distribution of each random variable,
which causes Infer.NET to serialise a factor graph [10] de-
scribing the model, from which we extract the correspond-
ing Bayesian network. Concurrently-threaded edit-triggered
recompilation provides ‘level 3 liveness’ [17]. Each edit
spawns a separate type-checking and compilation thread on
an in-memory copy of the program. Subsequent edits termi-
nate old threads. This enables concurrent background compi-
lation while the user continues editing.

Figure 2: Overall design of the experiment.

Our system scales to complex programs provided Infer.NET
compiles fast enough for liveness. The graph can become un-
wieldy for vast numbers of variables and interdependencies
(e.g., 1000s). However, in the context of novice program-
ming, problems are typically much smaller and meant to be
illustrative, and our system handles these well.

EXPERIMENTAL EVALUATION
We designed an experiment to evaluate the following: Prac-
tice: does the use of multiple representations facilitate initial
practice exercises in probabilistic programming, as measured
by task time, keystrokes and deletions relative to a traditional
editor? Application: does the use of multiple representations
reduce effort in simple end-user development (EUD) tasks,
using the same measures?

Experiment design and procedure
We recruited 16 University of Cambridge undergraduates
studying computer science or mathematics. All students had
basic prior knowledge of probability, but had never encoun-
tered probabilistic programming.

To present the experimental tasks in a familiar manner, we
designed a workbook in the same format as programming as-
sessments from the Cambridge undergraduate computer sci-
ence course. The workbook consisted of two parts:

Part 1 introduced the participant to F#, probabilistic pro-
gramming and Infer.NET, by interleaving text explanations,
four code examples and four practice exercises.

Part 2 consisted of 8 exercises in 4 pairs designed to be of
equal difficulty. The exercises were equally divided into two
types: Debugging exercises, where participants were given
a program and a short English specification and asked to in-
dicate the bugs which caused the program to deviate from
the specification; and Description exercises, where partici-
pants were given a program and asked to describe its purpose.
Equal difficulty was based on number of random variables in
the model, equal numbers of discrete vs. continuous, numbers

Figure 3: Lower keystrokes in phase 1 with MRE.

of dependencies, and numbers of modification steps needed
to complete the debugging exercises.

We did not include authoring tasks, as these are harder to in-
troduce in a setting where the learning time of participants
is limited. Use of debugging tasks allowed us to use con-
siderably more complex programs than participants could be
expected to author from scratch, and also reflects contextual
evidence that novice end-user developers generally modify
programs created by others.

For phase 1, participants were divided into 2 groups of size
8. Both groups completed Part 1 of the workbook, the first
group using the multiple representation environment (MRE)
and the second group using a more conventional environment
(CE), created by hiding the two visualisation panes from our
prototype, leaving only the source code pane. Both MRE and
CE included the console which shows parse/type errors and
acts as standard output. Participants who used the MRE in
phase 1 were not specifically instructed about the MRE sys-
tem. They explored the same tutorial examples but with the
MRE rather than the CE.

For phase 2, each group was then further split into four sub-
groups of size 2, using a 2 × 2 counterbalanced design to fa-
cilitate a within-subject study on programming effort. Each
participant completed four exercises using the MRE and the
other 4 (their equal difficulty counterparts) with the conven-
tional editor. The order of condition (with-visualisations or
without), and the order of exercises was counterbalanced.

For each participant, we recorded the number of keystrokes,
backspaces and time needed to complete each exercise. Par-
ticipants were asked to vocalise their answers and were given
an indication of whether they were correct or incorrect. We
did not record the number of correct answers; instead, partic-
ipants were gently prompted to continue if they had made a
mistake until a correct solution was reached. The study took
92 minutes on average.

RESULTS

Practice phase (between-subjects)
A one-way MANOVA treating the three measurements (task
time, keystrokes, and deletions) as different dependent vari-
ables indicated that one or more of these variables is depen-
dent on the type of practice (p = 2.88 · 10−3).

Comment Context
P04 I completely missed [that] dependency. Description exercise, CE.
P05 Found that quite fun. Finishing with the MRE.
P05 Argh, no graph, nooo! Change from MRE to CE.
P06 ‘Correct the errors’ – how am I supposed to – the arrows were so useful for errors! Debugging exercise, CE.
P06 I would really like the thing with the arrows. Debugging exercise, CE.
P06 Looking at the code is horrific... but looking at the graph is not that bad. Description exercise, MRE.
P11 You see straight from the IDE... Description exercise, MRE.
P16 I’m not going to look at the code anymore! Change from CE to MRE.

Table 1: Participant comments.

V p MRE
median

CE
median

Time 611 0.004162 288s 359s
Keystrokes 302 0.002044 15.5 79
Backspaces 367.5 0.02397 3.5 9

Table 2: Results of paired Wilcoxon tests on Part 2 exercises.

A follow-up ANOVA on each dependent variable separately
(applying a Bonferroni correction to yield α = 0.0167) re-
vealed no significant effect on either task time or deletions.
However, practice with the MRE required significantly fewer
keystrokes (F = 23, p = 2.85 · 10−4). The effect size was a
difference of medians of 64.5 keystrokes, down to 28.5 from
93 with the CE (Figure 3).

Application phase (within-subjects)
To conduct a within-subjects comparison between the MRE
and CE in phase 2, we use the paired Wilcoxon signed-rank
test as the data were not normally distributed (Shapiro-Wilk
test, p < 0.05 in all cases).

Table 2 summarises the Wilcoxon tests carried out on phase 2
tasks. We observe that the MRE provided significant advan-
tages in completing probabilistic programming exercises over
the conventional editor. With the MRE, participants gained a
median task time improvement of 71s, a median reduction of
63.5 keystrokes, and a median reduction of 5.5 deletions.

DISCUSSION
We did not observe a significant difference in practice time
when using a multiple representation editor, likely because a
larger proportion of time was spent reading and internalising
the exercises than coding. During the practice phase, par-
ticipants with the MRE used significantly fewer keystrokes,
suggesting that providing multiple representations improved
their ability to understand and apply Infer.NET syntax.

Moreover, during the second (application) phase, significant
improvement in time, keystrokes and deletions was observed
when using the MRE. Comments from the participants show
qualitatively that users greatly preferred the visualisations and
found them beneficial (Table 1).

The advantages of multiple representations were particularly
evident during the description exercises. Four participants in

the MRE-practice condition stated while using the conven-
tional editor that they were trying to mentally visualise the
Bayesian network to better understand the dependencies be-
tween variables. Moreover, when asked to describe a model
aloud using the conventional editor, participants were more
likely to start reading the code line by line (e.g. “when
Cloudy is true, Rain is Bernoulli(0.7), otherwise
it is Bernoulli(0.1).”). In comparison, participants us-
ing the MRE spoke in terms of variable dependencies and un-
covered connections otherwise not obvious from the source
code alone (e.g “It’s more likely to rain when it is Cloudy, and
consequently it is more likely to be wet when it is Cloudy”).

These results demonstrate that use of multiple simultaneous
representations in a live environment allows users to engage
with the novel programming model more efficiently and ef-
fectively. In this study, we focused on relatively straight-
forward practice and application tasks, typical of novice or
end-user development engagement with a new programming
environment. A natural next step would be to extend this in-
vestigation from interpretation and debugging tasks, to more
exploratory development tasks (as carried out by professional
data analysts) or educational exercises (as used when teach-
ing machine learning with probabilistic languages).

CONCLUSION
We have motivated the use of multiple simultaneous repre-
sentations in probabilistic programming tools. Our core de-
sign aims were multiple representation, i.e. showing multiple
simultaneous views of the program; and liveness, where the
program is not a static entity, executed only after compiling,
but rather an interactive object.

We have presented a system which leverages existing dia-
grammatic convention to implement a live, multiple repre-
sentation editor for probabilistic programs, incorporating a
conventional text editor for source code, a Bayesian network
node-link diagram, and chart visualisations to display the pos-
terior distributions of random variables.

Finally, in a study of 16 users, we have shown that the use of
multiple representations has significant qualitative and quan-
titative benefits, reducing the time, keystrokes, and deletions
needed to carry out typical novice end-user tasks such as ini-
tial practice, program comprehension and simple debugging.

REFERENCES
1. 2015. Bayesia. (2015). http://www.bayesia.com/

Accessed: February 9, 2016.

2. 2015. F# Compiler Services. http:
//fsharp.github.io/FSharp.Compiler.Service/.
(2015). Accessed: February 9, 2016.

3. 2015. Light Table. http://lighttable.com/. (2015).
Accessed: February 9, 2016.

4. 2015. Netica. (2015).
https://www.norsys.com/netica.html Accessed:
February 9, 2016.

5. Christopher M Bishop, David Spiegelhalter, and John
Winn. 2002. VIBES: A variational inference engine for
Bayesian networks. In Advances in neural information
processing systems. 777–784.

6. Richard Bornat, Saeed Dehnadi, and others. 2008.
Mental models, consistency and programming aptitude.
In Proceedings of the tenth conference on Australasian
computing education-Volume 78. Australian Computer
Society, Inc., 53–61.

7. Wray L. Buntine. 1994. Operations for learning with
graphical models. JAIR 2 (1994), 159–225.

8. Sebastian Burckhardt, Manuel Fahndrich, Peli de
Halleux, Jun Kato, Sean McDirmid, Michal Moskal, and
Nikolai Tillmann. 2013. It’s Alive! Continuous
Feedback in UI Programming. In PLDI. ACM
SIGPLAN. http://research.microsoft.com/apps/
pubs/default.aspx?id=189242

9. Andrew D Gordon, Thore Graepel, Nicolas Rolland,
Claudio Russo, Johannes Borgstrom, and John Guiver.
2013. Tabular: A Schema-Driven Probabilistic
Programming Language. Technical Report
MSR-TR-2013-118. http://research.microsoft.
com/apps/pubs/default.aspx?id=204661

10. F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. 2001.
Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory 47, 2 (2001),
498–519. DOI:
http://dx.doi.org/10.1109/18.910572

11. David J Lunn, Andrew Thomas, Nicky Best, and David
Spiegelhalter. 2000. WinBUGS-a Bayesian modelling
framework: concepts, structure, and extensibility.
Statistics and computing 10, 4 (2000), 325–337.

12. T Minka, J M Winn, J P Guiver, S Webster, Y Zaykov,
B Yangel, A Spengler, and J Bronskill. 2014. Infer.NET
2.6. (2014).

13. Kevin Murphy. 1998. A brief introduction to graphical
models and Bayesian networks. (1998).

14. P Sedlmeier and G Gigerenzer. 2001. Teaching
Bayesian reasoning in less than two hours. Journal of
experimental psychology. General 130, 3 (Sept. 2001),
380–400.
http://www.ncbi.nlm.nih.gov/pubmed/11561916

15. Alistair Stead and Alan F. Blackwell. Learning Syntax
as Notational Expertise when using DrawBridge. In
Psychology of Programming Interest Group Annual
Conference 2014. 41.

16. Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda.
1981. Methods for visual understanding of hierarchical
system structures. Systems, Man and Cybernetics, IEEE
Transactions on 11, 2 (1981), 109–125.

17. Steven L Tanimoto. 1990. VIVA: A visual language for
image processing. Journal of Visual Languages &
Computing 1, 2 (1990), 127–139.

18. Uan-Diego Zapata-Rivera and Jim E. Greer. 2004.
Interacting with Inspectable Bayesian Student Models.
International Journal of Artificial Intelligence in
Education Volume 14, Number 2/2004 - IOS Press
(2004). http://iospress.metapress.com/content/
rj0wwc454vvll8xn/

http://www.bayesia.com/
http://fsharp.github.io/FSharp.Compiler.Service/
http://fsharp.github.io/FSharp.Compiler.Service/
http://lighttable.com/
https://www.norsys.com/netica.html
http://research.microsoft.com/apps/pubs/default.aspx?id=189242
http://research.microsoft.com/apps/pubs/default.aspx?id=189242
http://research.microsoft.com/apps/pubs/default.aspx?id=204661
http://research.microsoft.com/apps/pubs/default.aspx?id=204661
http://dx.doi.org/10.1109/18.910572
http://www.ncbi.nlm.nih.gov/pubmed/11561916
http://iospress.metapress.com/content/rj0wwc454vvll8xn/
http://iospress.metapress.com/content/rj0wwc454vvll8xn/

	Introduction
	Previous work
	Our multiple-representation environment
	Visual representation
	Liveness

	Experimental evaluation
	Experiment design and procedure

	Results
	Practice phase (between-subjects)
	Application phase (within-subjects)

	Discussion
	Conclusion
	REFERENCES

