
Improving Steering and Verification in AI-Assisted Data Analysis
with Interactive Task Decomposition

Majeed Kazemitabaar Jack Williams Ian Drosos
University of Toronto Microsoft Research Microsoft Research

Toronto, Ontario, Canada Cambridge, UK Cambridge, UK
majeed@dgp.toronto.edu jack.williams@microsoft.com t-iandrosos@microsoft.com

Tovi Grossman Austin Z. Henley Carina Negreanu
University of Toronto Microsoft Research Microsoft Research

Toronto, Ontario, Canada Redmond, Washington, USA Cambridge, UK
tovi@dgp.toronto.edu austinhenley@microsoft.com cnegreanu@microsoft.com

Advait Sarkar
Microsoft Research
Cambridge, UK

advait@microsoft.com

Figure 1: An illustration of the three decomposition approaches that we developed for solving data analysis tasks using AI: (A)
Conversational approach solves the entire task without any user intervention but allows submitting follow-up prompts
for further steering. (B) Stepwise approach provides intervention points at each step of solving the task by presenting pairs
of editable assumptions followed by corresponding code at each step. (C) Phasewise approach provides intervention points
at each phase of solving the entire task with three editable components: editable assumptions of the entire task structured
around relevant columns of the dataset, editable task execution plan, and corresponding code.

https://orcid.org/0000-0001-6118-7938
https://orcid.org/0000-0003-1925-7191
https://orcid.org/0000-0003-3475-2609
https://orcid.org/0000-0002-0494-5373
https://orcid.org/0000-0003-1069-2795
https://orcid.org/0000-0003-2130-7223
https://orcid.org/0000-0002-5401-3478
mailto:cnegreanu@microsoft.com
mailto:t-iandrosos@microsoft.com
mailto:advait@microsoft.com
mailto:austinhenley@microsoft.com
mailto:jack.williams@microsoft.com
mailto:tovi@dgp.toronto.edu
mailto:majeed@dgp.toronto.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3654777.3676345&domain=pdf&date_stamp=2024-10-11

Abstract
LLM-powered tools like ChatGPT Data Analysis, have the potential
to help users tackle the challenging task of data analysis program-
ming, which requires expertise in data processing, programming,
and statistics. However, our formative study (n=15) uncovered seri-
ous challenges in verifying AI-generated results and steering the
AI (i.e., guiding the AI system to produce the desired output). We
developed two contrasting approaches to address these challenges.
The first (Stepwise) decomposes the problem into step-by-step
subgoals with pairs of editable assumptions and code until task
completion, while the second (Phasewise) decomposes the entire
problem into three editable, logical phases: structured input/out-
put assumptions, execution plan, and code. A controlled, within-
subjects experiment (n=18) compared these systems against a con-
versational baseline. Users reported significantly greater control
with the Stepwise and Phasewise systems, and found intervention,
correction, and verification easier, compared to the baseline. The
results suggest design guidelines and trade-offs for AI-assisted data
analysis tools.

CCS Concepts
• Human-centered computing → Natural language interfaces;
Interactive systems and tools; Empirical studies in HCI.

Keywords
Data Analysis, Data Science Assistant, Human-AI Interaction, AI
Agents, Generative AI, Large Language Models, Copilot

ACM Reference Format:
Majeed Kazemitabaar, Jack Williams, Ian Drosos, Tovi Grossman, Austin Z.
Henley, Carina Negreanu, and Advait Sarkar. 2024. Improving Steering and
Verification in AI-Assisted Data Analysis with Interactive Task Decompo-
sition. In The 37th Annual ACM Symposium on User Interface Software and
Technology (UIST ’24), October 13–16, 2024, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 19 pages. https://doi.org/10.1145/3654777.3676345

1 Introduction
Data science often involves large datasets, source code, domain ex-
pertise, and unwritten assumptions [68]. The process of extracting
insights from data [94] for decision making and knowledge discov-
ery [20] has several documented challenges [8, 68]. Data scientists
spend considerable time inspecting data, writing single-use scripts,
“gluing together” data sources, cleaning messy data, and document-
ing their efforts [8, 47, 48, 68]. In fact, data scientists describe the
need to “have a conversation” with their data to understand it [68].

Recent advancements in AI and particularly the natural language
processing and code generation capabilities of Large Language
Models (LLMs) have shown promise to facilitate data science tasks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0628-8/24/10
https://doi.org/10.1145/3654777.3676345

Specifically, chain-of-thought prompting [96] and ReAct prompt-
ing [100] have emerged as implementation techniques for task
decomposition, generating “reasoning” traces, followed by “acting”
traces where the LLM can invoke external agents. In data science,
such agents might read from datasets and execute code. For exam-
ple, ChatGPT Data Analysis supports uploading CSV files, after
which its language model and code execution agents can be used
to clean data, display visualizations, and answer questions about
data through its iterative chat interface [70].

However, a study of data scientists using ChatGPT without code
execution functionality found that participants were unaware of
the AI’s assumptions when solving the task, found verifying the
correctness of results tedious, were overwhelmed by long responses,
and could not effectively steer the AI when it made mistakes [10].

To better understand user behavior, needs, and challenges when
performing exploratory data analysis with a conversational AI tool,
we conducted a formative study involving 15 participants (Sec-
tion 3). The study identified steering and verification as the primary
limitations of conversational AI tools. Steering refers to the user’s
interaction with the AI to guide its output from an initial state to
a desired outcome. Verification refers to the user’s interaction to
understand the AI’s output, check its correctness, ensure no incor-
rect assumptions were used, and decide on further refinement. The
study also highlighted the need for new affordances that decompose
and display the AI’s chain-of-thought reasoning as structured and
interactive assumptions, enabling users to modify them at any time,
even retroactively.

Based on this core requirement we developed two systems that
make “decomposition” a focal point in the interface, not just an
implementation detail (Section 4). First, the Phasewise system
decomposes the problem into three editable phases (assumptions,
planning, and code) with increasing levels of specificity. Second,
the Stepwise system decomposes the task into separate steps (vi-
sually similar to a computational notebook), displaying editable
assumptions and their corresponding code one step at a time until
the task is complete.

Both approaches use the LLM to decompose the task into parts,
and help the user focus on one part at a time (as a metacognitive
aid [89]). This enables finer-grained steering than standard con-
versational prompting [103], and progressive disclosure to reduce
information overload [69]. We introduce the idea of using the LLM
to generate editable assumptions about the input and desired output,
based on the task query and data. This also provides a structure
for verifying that the AI correctly interpreted the user’s intent and
translated it into a valid plan. However, when decomposing a task,
there is an important space of trade-offs: how much information to
display, when to display it, and how many intervention points to
provide with how much control. Our two systems occupy different
points in this space, and through our user study, we evaluated the
trade-offs and identified different situations in which each approach
might be beneficial (Sections 5 and 6).

We conducted a controlled, within-subjects experiment (n=18)
comparing the Stepwise and Phasewise tools on task decomposi-
tion and prompting strategies that support steering, verification,
and the user’s perceived utility of the tools. We also developed a
baseline tool, called Conversational, similar to ChatGPT with
code execution. Users reported significantly greater control with

https://doi.org/10.1145/3654777.3676345
https://doi.org/10.1145/3654777.3676345
mailto:permissions@acm.org

Improving Steering and Verification in AI-Assisted Data Analysis with Interactive Task Decomposition UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

the two new systems, and found intervention, correction, and veri-
fication easier, compared to the baseline.

This paper makes the following contributions:
• A formative study that identifies the limitations of “conver-
sational” AI tools in terms of steering them and verifying
their output.

• A novel approach to improve steering and verification using
editable AI assumptions, progressive disclosure, and non-
linear conversations to promote data exploration and verifi-
cation. We describe two implementations of this approach,
each balancing information overload and the degree of user
control differently (Section 4).

• A within-subjects experiment in which we compared the
two systems with a Conversational baseline system (Sec-
tion 5), finding that while there was no difference in task
success or completion time, participants felt significantly
more in control with the Phasewise and Stepwise systems
compared to the baseline (Section 6).

2 Related Work

2.1 AI-assisted Data Analysis
Previous work has considered how data transformation scripts
can be synthesized from demonstrations (e.g., Wrangler [32, 41]).
This follows an influential line of research that synthesizes pro-
grams from examples in data wrangling contexts (e.g., [30]), which
may include natural language [31]. These can be constrained to
use specific APIs such as pandas, using generator-based synthesis
(e.g., AutoPandas [5]). Scripts can also be synthesized based on
heuristics of data quality improvement (e.g, CoWrangler [9]), and
data preparation heuristics can also be learned from corpora (e.g.,
Auto-Suggest [99]).

More recently, a number of commercialized LLM supported data
analysis tools have become available. These enable data scientists
to access AI-powered chat assistants within their notebook (such
as Anaconda [2], Databricks [14], and Jupyter AI [38]), and other
alternate data-science environments (e.g., DataChat AI [15], SQL
and file editors for Databricks, etc.). The semantic abilities of LLMs,
coupled with a chat interface, allows conversational interaction
with data, follow-up questions, and highly contextualized responses.
Consequently, research has investigated the chatbot paradigm for
AI assistance in data analysis and visualization in detail [18, 28, 35,
43, 84, 105].

Thus, early work on data wrangling script synthesis can be con-
trasted with current LLM-powered data analysis tools both in terms
of the complexity of tasks being tackled, and the interaction modal-
ity (i.e., from demonstration, examples, and direct manipulation, to
naturalistic language prompts). In turn, this also means that gener-
ation mistakes become more common, due to underspecification of
natural language, assumptions that the AI is making but the user is
not aware of, etc. This creates new metacognitive demands for the
user to verify the AI’s responses and then steer the AI if incorrect.
In our work, we try to provide new interaction modalities with
LLMs for data analysis tasks to increase the transparency of the AI
and the assumptions that it is making.

McNutt et al. [65] present a design space for AI code assistance
in computational notebooks, which are commonly used for data

analysis. They find that AI assistants can vary in the gestures they
provide for the user to initiate a model response, and options that
the user has to verify and refine the output. They also consider
the relationship between the assistant interface and other interface
components, such as code context, specialization, provenance, and
customization.

Though not specifically tackling data analysis, Sarkar et al. [81]
studied the experiences of programmers using LLM assistance for
writing code. They found that LLM assistance was most useful in
rewriting boilerplate code and in API discovery, but also brought
new challenges for debugging and code inspection. Sarkar et al.
also identify prompt formulation as a major challenge. Fiannaca et
al. [23] describe methods for how this can be improved by lever-
aging semantically meaningful structure within prompts to assist
programmers.

Similarly, Vaithilingam et al. [91] found that while programmers
preferred LLM-assisted programming to unassisted programming,
there were no consistent improvements in task time or success rate,
due to productivity benefits being opposed by new challenges in
debugging and comprehension of AI-generated code. A detailed
telemetric study of GitHub Copilot usage by Mozannar et al. [67]
similarly found that the “verifying suggestion” state is the most
time consuming.

There have been other studies of AI-assisted programming [4, 19,
40, 56]. Many of these point to steering and verification as general
challenges with all LLM-assisted programming, which also apply
in the specific case of programming data analysis scripts with LLM
assistance.

However, it is worth noting that data analysis does have par-
ticularities in comparison to “general” programming tasks, e.g.,
data analysis programming tends to be more exploratory and open-
ended, and the activity of analyst sensemaking and insight genera-
tion is more important than providing code as a finished product
[22, 27, 42, 47, 54, 61, 73, 76, 77]. The implication of this is that the
need for rapid steering and verification is more acute in data analy-
sis programming, since the effectiveness of the process depends on
rapid exploration of the program space.

2.2 Verifying LLM Outputs and their Reliability
Data science is a challenging yet important function within soft-
ware teams. Previous research has focused on how data scientists
engage in collaborative sensemaking, and make choices about how
to communicate and report results [11, 50, 51, 71, 93, 104]. They
have found that data scientists need support in managing these
complex collaborative workflows [46, 48, 95]. Consequently, re-
search has explored how data scientists can manage, visualize, and
trace the evolution of their analysis process [33, 45, 74, 97, 98].

Working with an AI assistant may have important differences
from a human team. Trust in AI systems is developed differently
from trust in human collaborators and is mediated by the conceptual
metaphors used to convey them [37, 49]. Trust, communication,
and perception management in human collaborations may result
in a lack of code verification behaviours, or selective sharing [17,
61, 65, 71, 93]. This raises the importance of additional tools for
verifying AI generated output, for instance “co-audit” tools [25].

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Kazemitabaar, et al.

Previous research has noted the importance of explainability in
AI to support user tasks and decision-making [52, 57, 58]. There
are difficulties in applying traditional explainability techniques to
large language models due to their large number of parameters,
training sets, and complex and open-ended space of inputs and
outputs [19, 79, 88, 92]. Research has also explored the challenges
non-experts face in prompting and conversational strategies for
explainability [3, 55, 103].

Furthermore, previous research on AI coding assistants empha-
sizes that engaging users in verifying the process of how the AI
generates code can maximize user experience, efficiency, and the
predictability of obtaining a helpful response [44]. For instance,
CodeHelp [59] incorporates a Sufficiency Check step that engages
users in refining the AI’s understanding of the task by prompting
them to clarify uncertainties or provide missing context.

Gu et al. [29] created a design probe similar to ChatGPT Data
Analysis [70] with an added sidebar for inspecting intermediary
variables. They conducted a study with 22 participants using the
design probe to understand common behaviors for verifying the
AI’s response to a natural language query and dataset. They found
two main behaviors within the verification workflow: procedural-
oriented and data-oriented which in many cases were tightly cou-
pled and participants frequently switched between an intermediary
variable and the code that outputted it. In contrast with how data
analysts verify their work in any tool-assisted (non-AI) data analy-
sis workflows, there is now a much bigger demand for verification
when users “offload” an entire data analysis task to an LLM.

In our work, we explicitly ask the AI to show its assumptions
and reasoning in a structured (and editable) way, paired with their
corresponding actions, so that users could focus on them and make
decisions. We also include features such as “side queries” that allow
users to pose exploratory questions, build up assumptions, and then
add those assumptions to the AI generation workflow.

2.3 Steering LLMs
Currently, most commercial LLM tools (e.g., ChatGPT Data Analysis
[70] or ChatGPT with Noteable [1]) use a turn-based conversational
method, where the AI attempts to solve problems with minimal in-
tervention points. Typically, users can only steer the AI after it has
generated an entire solution, using follow-up prompts, which limits
steering control. To address such limitations, Masson et al. [63]
propose principles of direct manipulation [36] for steering LLMs
in other contexts: continuous representation of objects of interest,
physical actions to localize prompt effects, and reusable prompts.
Furthermore, research on the metacognitive demands of generative
AI identifies decomposition and structured generation as potential
aids [89]. Suh et al. [87] explore hierarchical text generation at
different abstraction levels to assist with sensemaking and man-
aging information overload from large text quantities. They also
introduce structured generation [86], where user’s prompt is first
used to generate dimensions that make the model’s responses vary,
and then responses are generated according to those dimensions.

Specifically in the context of AI-assisted programming, Liu and
Sarkar et al. [60] introduce “grounded abstraction matching,” al-
lowing users to steer LLMs by editing natural language utterances
grounded in each step of AI-generated code for data analysis in

spreadsheets. Similarly, Tian et al. developed Steps, which lets
users edit step-by-step explanations of AI-generated SQL code from
natural language queries [90]. CoLadder [101] aids experienced pro-
grammers in externalizing their problem-solving intentions flexibly,
enhancing their ability to evaluate and modify code across various
abstraction levels, from goal to final code implementation. These
methods enable users to edit natural language prompts grounded in
each step of AI-generated code, providing an accessible abstraction
level for reading, verifying, and editing.

However, these approaches hide the AI’s reasoning and decom-
position process, leaving users without insight into the “how” and
“why” behind the generated code. Users are left to manually infer
the AI’s reasoning from the output and determine explicit actions
to edit and refine the grounded utterances. While this might be an
acceptable trade-off in systems that generate short programs (e.g.,
typical spreadsheet formulas or SQL queries), it is unclear how this
approach would extend to longer and more complex data analysis
scripts. Our work expands this design space by not only displaying
the AI’s assumptions in a structured way but also enable users to
directly edit these assumptions as a novel method of steering the
AI to control its output.

3 Formative Study
To explore the challenges of data analysis with conversational AI
assistants, we conducted a formative study with 15 participants (12
male, 3 female, 0 non-binary) using the Noteable plugin for Chat-
GPT [1]. At the time of the study, Noteable was the only publicly
available tool offering features similar to ChatGPT Data Analysis
(formerly Code Interpreter). With Noteable, participants could up-
load datasets to a Noteable project and enter a natural language (NL)
descriptions of their data analysis task in ChatGPT. In response,
ChatGPT would generate code cells in the Noteable project, which
Noteable would execute. ChatGPT then displayed Noteable’s output
including any tables or visualizations, and generated an interpreta-
tion of the results. ChatGPT would then continue generating code if
the task was incomplete, or asked users for additional information
if required.

Participants (F1-F15), who were recruited from our research insti-
tute, regularly performed data analysis tasks using computational
notebooks and Python data science libraries. Each participant was
assigned to one of four tasks commonly performed by data scien-
tists: data cleaning, merging and plotting, extracting insights, or
training an ML model (see Table 1).

Study sessions lasted approximately 60 minutes and were con-
ducted in-person. Screen activity was recorded. Participants were
asked to think aloud [24], and audio data was recorded and tran-
scribed. Participant consent was obtained prior to the study and
participants were each compensated with a GBP £25 Amazon gift
card. The study protocol was approved by our institution’s ethics
and compliance review board.

3.1 Results
We analyzed the interactions participants had with ChatGPT and
the Noteable plugin from 301 total prompts. Participants used a mix
of different actions which included (1) directing the AI to perform a
data analysis task, (2) exploring the dataset, (3) requesting suggested

Improving Steering and Verification in AI-Assisted Data Analysis with Interactive Task Decomposition UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Table 1: Tasks used in the formative study in which users used ChatGPT with the Noteable plugin.

Task Dataset Task Description Assigned Participants
Data Cleaning food-choices.csv Fix columns with inconsistent formatting and prepare

dataset for analysis.
F5, F8, F9

Merging and Plotting country-happiness.csv Merge the five happiness datasets on the country
column and visualize the top countries with the moist
changes in happiness score from 2015 to 2019.

F10, F11, F12, F13

Extracting Insights airbnb-nyc.csv Extract high-level spatial and temporal insights about
price, availability, and distribution.

F2, F3, F7, F15

Training Model heart-disease.csv Train an explainable ML model to predict presence of
heart disease and report the key factors contributing to
the presence or absence of heart disease in patients.

F1, F4, F6, F14

methods or approaches to accomplish the task, (4) steering and
repairing the AI process in how it should accomplish the task, and
(5) performing verification on the results of the task (either with or
without the AI).

Steering: Participants steered the AI’s actions and methods using
their NL prompts (106 prompts, 35%). Many of the steering prompts
(n=34) were for performing data wrangling (cleaning and manip-
ulation) tasks on specific columns of the dataset. Similarly, some
prompts (n=20) were used to explicitly add, remove, or change code
produced in previous steps (e.g., “exclude the ones that are
purely categorical” (F5)). For repairing mistakes the AI made or
any miscommunications between human and AI, participants fre-
quently corrected an assumption the AI had made (36 prompts). For
example, after ChatGPT generated data analysis code, F8 prompted
ChatGPT that they wanted code that could “map each row to
multiple classes and not just one closest class” instead.

Data exploration: We identified 76 instances (25%) in which par-
ticipants wanted to inspect the data frames loaded into the notebook
using natural language filters such as displaying “which country
names are inconsistent” (F12), and “unique values in GPA
column” (F8). Sometimes these explorations were in the form of
visualizations, (e.g., requesting a “histogram of cholesterol
levels” (F6)).

Verification: Although the most common behavior for validating
the AI’s process was reading the AI-generated code and inspecting
the output, we also categorized 57 prompts (19%) as assisting with
verification, such as: “The USA is missing from all these
heat maps, is it also missing from the CSV files or
not?” (F11).

Code or Logic Explanation: In 21 prompts (7%), participants used
the main thread of the conversation to ask the AI for explanations
about code they did not understand, an algorithm that was used,
how something was computed, or help interpreting the results.

Furthermore, our results indicate that each participant engaged
in linear conversations consisting, on average, 20 AI-generated
messages (SD=5). They experienced lengthy responses upon each
interaction point, averaging 24 lines of AI-generated code (SD=21,
Max=152) and 134 words of the AI’s interpretation of the output

(SD=104, Max=717). Participants often lost track of the long con-
versation history and struggled with finding, verifying, and fixing
accumulated assumptions. As a result, they requested an “undo
button” to fix accumulated assumptions made by the AI. Without
this feature, they tried workarounds, asking the AI to “undo the
last step” (F9) or to “ignore the previous data cleansing
steps and do it from scratch” (F5).

3.2 Design Goals and Rationale
Our formative study highlighted steering and verification as the
most common user interactions. Based on our findings, along with
relevant prior work and how such AI tools use chain-of-thought
prompting for task decomposition and execution, we established the
following design goals to enhance user control over the AI-assisted
data analysis process.

First, participants struggled to understand the AI’s reasoning.
They often tried to manually infer the underlying assumptions from
its generated code, verify them, and then correct them with follow-
up prompts. This was evident from the 36 prompts that they used
to explicitly fix incorrect assumptions made by the AI. Therefore,
DG.1 proposes visually separating each different assumption from its
corresponding actions (code) and allowing users to directly edit and
update them.

Second, participants were overwhelmed by long responses and
lost track of the long conversation history. Consistent with previous
studies [10], DG.2 recommends adding intervention points in the
AI’s responses to help users focus on smaller information chunks.
Additionally, steering operations should update only relevant sections
at each intervention point, rather than adding new outputs to the
main thread.

Lastly, participants frequently used prompts for data exploration,
result verification, and code explanation. While these were useful,
they often derailed the main conversation thread from solving
the task. To address this, DG.3 suggests enabling side conversations
and other methods to assist users in verifying assumptions without
cluttering the main thread.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Kazemitabaar, et al.

Figure 2: The starting input for all systems, which includes a
button to upload datasets a , selectable datasets to be included in
the analysis b , and a text input for entering the natural language
description that specifies the data analysis task c .

4 System Design
We address design goal DG.1 through interactive task decomposi-
tion. This involves: (1) prompting the LLM to generate its chain-of-
thought reasoning as NL assumptions and corresponding actions
about the input task and dataset; and (2) rendering the LLM’s output
as structured, editable UI components, allowing users to refine the
AI’s proposed plan. We refer to these as editable assumptions that
represent the AI’s reasoning based on the task and dataset (e.g.,
pattern of values in a dataset column.)

In addressing DG.2 to provide proper intervention points, we en-
counter trade-offs in balancing the number, amount of information
presented, and the degree of control provided at each interven-
tion point. This led us to develop two alternative approaches. The
Phasewise system, which gives users greater control over the
entire analysis plan from the outset, but with fewer intervention
points, and requires the user to understand more information at
each step. Conversely, the Stepwise allows more focused control
by decomposing the task into step-by-step subgoals, increasing
intervention opportunities, reducing the information overload per
step, but with less structured control over the entire task.

Similarly, to address DG.3, we balanced the amount of informa-
tion displayed for verification and decision making at each inter-
vention point. The Phasewise system aids AI-based information re-
trieval by displaying relevant dataset columns, allowing inspection
of column statistics and AI assumptions, as well as distinguishing
required and suggested steps in the execution plan. To support
user-led exploration in both systems, we allocated a “sidebar” on
the ride side of the screen where users can: (a) select portions of the
AI-generated code and ask questions about them; (b) ask natural
language queries for data exploration; and (c) generate code from
natural language description for the user to manually incorporate
into the AI-generated code.

In the following, sections we outline the core features shared be-
tween the Phasewise and Stepwise systems, and explain how they
differ. Lastly, we describe the Conversational system, serving as
a baseline similar to ChatGPT’s Advanced Data Analysis plugin for
our user evaluation.

4.1 Core System Features

4.1.1 Task Input. Data analysis begins with dataset(s) and a task
specification. Dataset Input: Data is loaded using the Input Query

Figure 3: Overview of the Phasewise system’s task flow,
which decomposes tasks into three stages. Input + Output Assump-
tions, allows users to upload a dataset a , manage column-based AI
assumptions b , inspect column-based descriptive statistics c , add
columns missed by the AI d , and edit assumptions about the task’s
output e . Execution Plan contains the AI’s editable natural lan-
guage plan for solving the task f , which includes user-selectable
optional steps g . Code and Output contains AI generated code
for solving the task and includes an code editor h , intermediary
variable inspector i , and the code output j . Section 4.1.2 details
these features.

Improving Steering and Verification in AI-Assisted Data Analysis with Interactive Task Decomposition UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

interface (Figure 2, a). Users can then select one or more datasets
relevant to the task (Figure 2, b). The Python server generates
a summary of each selected dataset with sample values for all
columns. This summary is passed to the LLM to build its initial set
of assumptions for the data analysis task.

Task Specification Input: After selecting relevant datasets, users
specify their data analysis task in the text field and press submit to
start the data analysis process (Figure 2, c).

4.1.2 Task Decomposition: Phasewise System. Using the summary
of the dataset and the user-specified task description, the Phase-
wise system decomposes the task into three phases: Input and
Output Assumptions, Execution Plan, and Code and Output.

A) Input and Output Assumptions: After loading a dataset (Figure
3, a), this component displays all the columns that the AI found
to be relevant to the task, and for each column it displays several
editable assumptions regarding the task (Figure 3, b). Assumptions
can pertain to data type, uniformity, units, sorting order, etc. Users
can delete columns they find unrelated to the task, or add columns
that the AI incorrectly did not select (Figure 3, d). Within each
column, users can edit, add, or remove assumptions for that column
(Figure 3, b). For each column, users can “inspect” descriptive sta-
tistics (Figure 3, c), including a frequency table of sample values for
categorical columns. Additionally, the entire dataset can be viewed
by clicking on the “open” button a , with the selected columns
highlighted to help the user leverage the columns to build up as-
sumptions. Finally, the task’s output assumptions can be viewed
and changed to edit, add, or remove assumptions to steer the final
output (Figure 3, e).

B) Execution Plan: Using the assumptions, including edits, the
system generates a list of natural language steps for solving the task
(Figure 3, f). Steps are editable and the user may add or remove
steps. The model is also prompted to include optional steps that are
rendered as selectable steps with a checkbox (Figure 3, g). After
the user is satisfied with the plan, they can proceed to generating
and running the code.

C) Code and Output: Here the AI generates code to solve the
task based on the previous two components. The code is immedi-
ately executed and displayed in an editor to allow modification and
re-execution (Figure 3, h). Users can inspect the dataframe and
variables used in the code execution (Figure 3, i), and see the code
output (Figure 3, j)

4.1.3 Task Decomposition: Stepwise System. Unlike the Phase-
wise system where each component reflects the entire task, the
Stepwise system decomposes the task into subgoals, which have
intermediate objectives. Each subgoal (except the first, which loads
the dataset (Figure 4, a)), is represented as a pair of components:
Subgoal Assumptions and Actions, and Subgoal Code and Output.

A) Subgoal Assumptions and Actions: Each subgoal starts with a
short description of its objective in natural language, followed by
several assumptions and actions based on the dataset or previous
steps (Figure 4, b). We designed LLM prompts so that each subgoal
would focus on one specific objective such as pre-processing data,
filtering columns, performing calculations, and displaying plots.
Users may reorder assumptions and actions to change their priority,
add or remove assumptions, and edit them directly. Once the user

is satisfied with them, they can proceed to generate the subgoal
code and output.

B) Subgoal Code and Output: Similar to Code and Output in the
Phasewise system, in this component, the system generates code
to solve the task based on the previous assumptions and actions
(Figure 4, c). The code is immediately executed and can be edited.
Once executed, the system generates the next subgoal to allow the
user to either reflect on the current subgoal or start working on
the next. This process continues until the task is finished and the
requirements have been satisfied, in which case the next Subgoal
Assumptions and Actions will indicate completion. However, if the
user still wants to continue, they can add assumptions and actions
to continue.

4.1.4 Editable LLM Assumptions and Actions. We prompted the
LLM to generate each assumption paired with its correspond-
ing action in the format of <assumption> - <action> . We also
prompted the LLM to enclose column names, variables, and key-
words in backticks, which could be rendered into editable com-
ponents highlighted with a different color. The aim of these in-
terventions was to reduce information overload and improve the
efficiency of the editing process.

4.1.5 Code Execution and Intermediary Variables. The Python
server runs the AI-generated code and returns any outputs, in-
cluding text, visualization plots, or any errors. Any variables and
dataframes created during execution are displayed as intermediary
variables that the user may inspect.

Inspect Intermediary Variables: users can click on each intermedi-
ary variable to open a full-screen window for inspecting its values.
For dataframes, the interface includes a string matching filter to
assist users in finding specific values.

4.1.6 Managing Edits. Within each component, edits can be either
pending or submitted. A submitted edit means that the edits have
been applied to either generate the next component or regenerate
downstream components, whereas a pending edit has not. Pending
edits can be reverted using an undo button. However, once an edit
is submitted, our system introduces a new branch to preserve the
original, unedited version, while incorporating the edited version in
the “main” branch. New branches are displayed in a tabbed ribbon
at the top of the UI as shown in Figure 5. To allow iteration while
minimizing proliferation of branches, new branches are not created
when the user edits the last generated component in the stream
of components. Branching allows users to keep track of previous
edits and switch between edits as needed.

4.1.7 Side Conversations. We allocated space to the right of the
main components for running side conversations with the system
in three formats: Ask Question, Generate Code, and Run Side Query.
These features are available in all editable code execution blocks,
with the exception of Run Side Query, which is also accessible
alongside the Input and Output Assumptions in the Phasewise AI
system.

Ask Question: This allows users to ask questions about the gen-
erated code (See Figure 6). When a code editor is in focus or code is
selected, the Ask Question button appears to the right of the editor.
The user can provide a natural language query and the system

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Kazemitabaar, et al.

Figure 4: Overview of the Stepwise system’s task flow, which
decomposes each task into subgoals containing two components.
Assumptions and Actions includes the NL subgoal and editable AI
assumptions b . Code and Output contains a code editor a c , a
dataframe and variable inspector d , and the code output e . Section
4.1.3 details these features.

generates a response on the side. The selection allows users to ask
targeted questions such as “what does this function do?”

Generate Code: This feature generates code based on the selected
code segment and the user’s query. The user can inspect the gener-
ated code and, if it is found useful, insert it into the editor. Similar to
the Ask Question feature, the selection here enables asking targeted
questions, such as updating the code to exhibit a different behavior
based on a natural language prompt.

Figure 5: The tabbed ribbon displays all the branches created
after editing various nodes. Users can select a different tab
to switch to that branch. Each tab indicates where the edit
occurred and how much it has progressed (number of total
nodes).

Figure 6: In the Stepwise and Phasewise systems, users
can select any code in the editor to ask questions a from
the AI. This will create a question box to the right of the
main components in which users can ask their clarification
question b . The question box will then be replaced with the
AI’s response c , based on the query and the selected text.

Run Side Query: This feature enables ancillary data analysis tasks
using natural language queries. It enables further exploration of
the dataset or any intermediary dataframes, and helps users vali-
date and refine assumptions. By clicking on the Side Query button
(Figure 7), users can ask natural language queries about the dataset
or the current state of the code and variables. The system generates
and executes code in the side panel, allowing users to view outputs
such as visualizations, identifying outliers, and check the data’s
consistency.

4.2 Conversational Baseline System
We developed a Conversational system similar to ChatGPT’s
Advanced Data Analysis plugin as a baseline to compare with the
Phasewise and Stepwise systems. The Conversational system
does not include any intervention points or editable assumptions, or
any of the side conversation features (e.g. Ask Question or Run Side
Query). It decomposes the task into a bullet point of non-editable,
natural language assumptions and actions about the task, and then
immediately generates and runs non-editable code that solves the
entire task. To interact with this system, as with ChatGPT, the
user needs to issue follow-up prompts. In this baseline system only
the prompts (and follow-up prompts) are editable. For verification,
users could read the code and inspect the intermediate variables,
and for steering, they could ask follow-up questions in natural
language.

4.3 System Implementation
All three variants are built as a web application and Python server
stack. The web application is written in TypeScript and the React

Improving Steering and Verification in AI-Assisted Data Analysis with Interactive Task Decomposition UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Figure 7: The run Side Query button a is placed to the right
of each code execution block in the Stepwise and Phase-
wise systems, and the input and output assumptions in the
Phasewise system. This will open the question box b in
which the user can specify a natural language data explo-
ration query on any of the intermediary variables or the
original dataset. The question box will then be replaced with
the AI’s response which includes the code and any outputs,
including visualizations c .

web framework to include the interface elements described in Sec-
tion 4.1. The web application interacted with the Python server for
uploading datasets, obtaining their descriptive summaries, running
code, and retrieving their execution results. It also called the GPT-4
Turbo models from OpenAI. Each component in the Phasewise
or Stepwise system is represented as a node in a tree data struc-
ture inside the application. This enables tracing the path from each
node to the root node to prepare the context prompt for interacting
with the LLM and generating the next component. It also provides
state management for the edits that create branches and is used to
render the tabbed ribbon interface. The Monaco Editor is used as
the code editor in each of the code execution blocks and for syntax
highlighting the non-editable code pieces. To enable code execu-
tion on the Python server, and to retrieve code execution outputs
and intermediary variables, we used the IPython kernel. We used
the %matplotlib inline command which returned all plots as
base64 images that could be included as a response inside the REST
APIs.

4.3.1 LLM Prompt Structures. We required complete control over
the format of the LLM’s output to allow reliable parsing and ren-
dering of structured components. However, few-shot learning (e.g.
providing specific input and output examples) would make the
LLM overfit to the provided few-shot examples. Through informal
experimentation with different prompts and models, we concluded
that the GPT-4 and GPT-4 Turbo models are capable of following
templates that only specify the format of the output with mini-
mal specification of the content to be generated, with sufficient

[input-assumptions]:

 [dataset]: <dataset name>

 [relevant-columns]:

 [column]: <column name>

 [assumptions]:

 - <4-7 word column assumption> - <4-7 word required action>

 - <4-7 word column assumption> - <4-7 word required action>

 - ...

 [column]: <column name>

 [assumptions]:

 - <4-7 word column assumption> - <4-7 word required action>

 - <4-7 word column assumption> - <4-7 word required action>

 - ...

Figure 8: The prompt template that selects dataset columns
relevant to the task and generates assumptions and actions
for those columns in the Phasewise AI system.

reliability for a practical evaluation. Figure 8 shows an example
of the prompt used to select the columns relevant to the task and
generate assumptions and actions about each column. Although
the exact format and structure is explicitly provided, the values are
not, which enables the system to work generally on a variety of
input tasks and datasets.

5 User Evaluation
To evaluate and compare the Stepwise and Phasewise systems in
enabling users to steer the AI and verify its responses, we conducted
a within-subjects study. The study compared these systems with
the Conversational baseline and involved 18 participants who
used all three systems to complete six data analysis tasks, with two
tasks per system. Datasets and tasks were designed to be sufficiently
complex that the AI would not automatically produce correct so-
lutions without user involvement. They required participants to
carefully verify the AI’s process and responses and steer the AI in
addressing any issues.

The main focus of our exploratory study is on understanding the
unique ways in which each system aids in steering and verification
during the AI-assisted data analysis process. We also investigated
the perceived utility of other various system components, and ex-
plored the usage patterns and user preferences that emerged with
each system.

5.1 Participants
We recruited 18 participants (10 men, 8 women, 0 non-binary) from
a large research university. Participants were pre-screened to ensure
they were proficient in writing Python code, familiar with Python
data science libraries, and experienced in regularly performing data
analysis tasks. In terms of data analysis experience, five participants
reported having 1–2 years, seven having 3–5, and six more than five
years. The majority (14 participants) used Python daily, while the
rest used it at least weekly. All reported familiarity with data science
libraries like numpy, matplotlib, with 15 also familiar with pandas.
Jupyter Notebooks were used daily by eight participants, weekly

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Kazemitabaar, et al.

by six, monthly by two, and rarely by two. For English proficiency
in technical contexts, 16 participants felt very comfortable, while
two felt somewhat comfortable. In LLM usage for coding, seven
reported using daily, seven weekly, and four using monthly or less.

5.2 Data Analysis Tasks
We designed six tasks derived from the ARCADE benchmark [102],
which contains a diverse set of tasks from various datasets on Kag-
gle [39]. These tasks included a series of natural language (NL)
queries written by professional data scientists with the intention
of interacting with an AI assistant. We selected tasks to not re-
quire specific domain knowledge, targeting for participants to solve
them within a 15-minute time frame. However, we also wanted
to make sure that the tasks included additional complexities that
would make it difficult for the AI to correctly solve them without
proper user verification and intervention. Therefore, we selected
and altered tasks and their corresponding datasets with some for-
mat inconsistencies and altered distributions. For instance, Task 2
(Table 2) requires splitting tags and themes with commas before
grouping tags by themes. To increase complexity, we modified the
tags and themes columns to have only the first theme or tag in
capital case, with the rest in lowercase. See Table 2 for details of the
six study tasks. We ran each of the six tasks (query + dataset) 10
times on all three systems, ensuring a consistent 100% failure rate.

5.3 Study Procedure
The order of the three Phasewise, Stepwise, and Conversational
(baseline) systems was fully counterbalanced using a Latin square
design across the 18 participants and tasks to minimize order effects,
while tasks were fixed from T1 to T6. Participants spent approxi-
mately 50 minutes with each system. They received a 10-minute
tutorial and a 5-minute warm-up task to familiarize themselves
with the system. Then proceeded to the main study tasks, where
they were given a dataset and a NL query. The lead author who con-
ducted all experiments, explained the dataset and relevant columns
for each task. Participants proceeded to execute the task and were
asked to think aloud throughout the study [24].

Participants were made aware that identifying and correcting
mistakes made by the AI was their responsibility. They were in-
structed to notify the experimenter once they believed they have
achieved a correct result using the AI tool. The experimenter would
then verify their solution against expected outcomes and provide
up to two hints if necessary. These hints addressed AI mistakes cor-
relating with each of the two issues for each task, as listed in Table
2, ensuring consistency across participants. Completion criteria for
each task required resolving both issues listed in the table.

Following the completion of each task, participants were asked
about their choice of method for steering the AI (e.g., editing the
execution plan versus directly editing the code) and their verifica-
tion processes. After completing two tasks under each condition,
participants completed a questionnaire including Likert items about
their ability to verify, intervene and steer the AI, sense of control,
information overload, frustration levels, and the utility of specific
features (exact questions included in Figure 9). Additionally, partic-
ipants discussed their experience with each system in a 5-minute
semi-structured interview.

The sessions were conducted in-person, lasting approximately
2.5 hours with a short break after using each system. Consent was
obtained before running the study and each participant was com-
pensated with a GBP £50 Amazon gift card. Our study protocol was
reviewed and approved by our institution’s ethics and compliance
review board.

5.4 Data Collection and Analysis
We recorded the audio and screen activity during each session using
MS Teams. Audio recordings were transcribed for analysis. User
interactions and feature usage was also logged.

The think-aloud data was our main source of understanding how
participants used the different systems and what they thought about
them in comparison with each other. We transcribed the think-aloud
data and post-condition interviews, and two researchers performed
a negotiated, directed qualitative analysis. Ahead of the analysis,
we identified a set of research themes concerning steering and
verification during the AI-assisted data analysis process, and report
our findings organised by these themes in Section 6. Because we
were interested in specific themes a priori, and were not developing
a reusable coding scheme, our analysis differs from the commonly
applied inductive approach [7]. We did not develop a codebook,
and this is not a situation in which it is appropriate to seek inter-
rater reliability. Instead, we used a “deductive” coding approach
focusing on steering and verification as the main themes. The two
researchers iteratively discussed their interpretation of the findings
and negotiated each disagreement until it was resolved [64].

Task completion was defined as achieving a solution that cor-
rectly resolved both issues indicated in Table 2 for each task within
the 15-minute time frame. For tasks that were correctly completed,
we recorded the number of hints provided during each task and
calculated approximate time on task. Task completion time was an
approximate of when participants started the task (clicking on the
run query button) until they notified the experimenter that they
finished the task, with no remaining issues. However, our analysis
of task time is only indicative, as think-aloud protocols interfere
with accurate timing.

We analyzed post-condition Likert responses to compare the
three systems and determine any statistically significant differences
using a Friedman Chi Square test on the responses for each question
with the system type as the independent variable. When signifi-
cant differences were found (𝛼 = 0.05), a Wilcoxon signed-rank
test identified pairwise significant comparisons. Since we made
three comparisons (between each pair of systems), we applied a
Bonferroni correction (𝛼 = 0.016).

6 Results
In this section, we present a comparative analysis of the Stepwise
and Phasewise AI tools versus the Conversational baseline. Our
findings are derived from study observations, log data, participant
(P1–P18) think-aloud data, post-condition surveys, and post-study
interviews. In turn, we present the results regarding task completion
(Section 6.1), steering and control (Section 6.2), and verification
(Section 6.3).

Improving Steering and Verification in AI-Assisted Data Analysis with Interactive Task Decomposition UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Table 2: Final tasks used in the evaluation, including the exact queries for each task, the datasets involved, and issues the AI
would encounter without user intervention.

Natural Language Query Dataset Issues
Task 1: Show me the top five highly rated
products by Nivea

big-basket-products.csv Not recognizing multiple sub-brands of "Nivea"

(1) and not cleaning the Rating column to
accurately extract numeric values (2).

Task 2: What is the most common tag
associated with each theme?

anime-list.csv Not correctly splitting Themes by comma (1) and
overlooking the inconsistency in casing between
Tags and Themes (2).

Task 3: Display the top 20 most popular
drama names that have only one unique
genre? Popularity is based on drama
rating and votes.

korean-drama.csv Not filtering genres labeled as "Unknown" (1)
and extreme outliers in votes (2)

Task 4: What are the top ten positions
(based on mean salary) for working
remotely in US-based companies?

data-science-job-salaries.csv Not cleaning Country Code (1) and not
identifying remote companies using
Remote Ratio (2).

Task 5: Show the top five movies with the
highest percentage return on investment.

bollywood-movies.csv Failed to (1) clean budget correctly, and (2)
calculate missing Revenue values based on

India and Worldwide .

Task 6: What were the top three lowest
scoring matches? Sort in ascending order
and show location, local and visitor team
names.

euroleague-basketball.csv Failed to select related columns for calculating
scores (1), and not knowing how to aggregate
scores by Game and Round (2).

6.1 Task Completion
Successful task completion was determined as solving the task with
no remaining issues within 15 minutes. Of the 108 task episodes
(18 participants × 6 tasks), only 7 were not completed success-
fully. P13 had three non-completed tasks, and P3, P8, P11, and P14
each recorded one non-completed task. The distribution of non-
completed tasks per condition was as follows: Baseline: 1, Phase-
wise: 2, and Stepwise: 4. The incidence of task non-completion is
too low to permit statistical comparison.

In 31 instances of the 108 task episodes, participants indicated
task completion despite remaining issues, indicating insufficient
verification. In such situations, the protocol was for the researcher
to identify the remaining issue(s), requiring participants to steer
the tool towards fixing the problem. A Friedman Chi Square test
revealed no statistically significant differences in number of veri-
fication hints required across conditions (𝐹 (2, 34) = 1.0, 𝑝 = .606),
with 13 hints required for Baseline, 10 for Phasewise, and 8 for
Stepwise.

Furthermore, a one-way ANOVA showed no significant differ-
ences in task completion time between conditions. The mean com-
pletion times across conditions indicated that tasks solved with the

Baseline tool were finished slightly faster (M=543s, SD=220s), fol-
lowed by the Stepwise tool (M=588s, SD=329s), whereas tasks fin-
ished with the Phasewise tool were solved slightly slower (M=658s,
SD=240s).

Finally, post-condition questionnaires on ease of solving EDA
tasks (Figure 9, Q1) or participants’ sense of success (Figure 9, Q6)
did not show any statistically significant differences across the three
AI tools.

6.2 Steering and Control
Analysis of the post-condition questionnaires about control found
that participants felt significantly more in control of the AI’s anal-
ysis process when using the Stepwise and Phasewise systems
compared to the Baseline (Stepwise-vs-Baseline: 𝑝 = .001, 𝑑 = .42;
Phasewise-vs-Baseline: 𝑝 = .004, 𝑑 = .42). Participants also re-
ported that the Phasewise and Stepwise systems were signifi-
cantly easier to intervene and fix (Figure 9, Q3) whenever it was
doing something wrong (Phasewise-vs-Baseline: 𝑝 = .012, 𝑑 = .55;
Stepwise-vs-Baseline: 𝑝 = .011, 𝑑 = 1.05). However, no significant
differences were found in the perceived ease of steering between
the three systems (Figure 9, Q4).

In the remainder of this section, we explore themes identified
within participants’ workflows and their think-aloud data. This
analysis reveals varied preferences among participants and offers

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Kazemitabaar, et al.

Very Difficult Very Easy

Very Difficult
B
P
S

B
P
S

B
P
S

B
P
S

B
P
S

B
P
S

B
P
S

B
P
S

Very Easy

Very Difficult Very Easy

Very Difficult Very Easy

Not at all Completely

Not at all Extremely

Extremely Not at all

Extremely Not at all

Q8. To what extent did you feel overwhelmed
by the amount of information displayed in
the UI and options that you had?

Q1. How easy was the AI tool for solving data
analysis tasks?

Q2. How easy was it to verify and validate the
AI's responses?

Q3. How easy was it to intervene and fix the AI
whenever it was doing something wrong?

Q4. How easy was it to steer the AI towards
your desired solution?

Q5. To what extent did you feel in control of
the AI's analysis process?

Q6. How successful do you feel you were in
achieving accurate and satisfactory results
using the AI?

Q7. When working on the tasks, how
frustrated did you feel?

(*)

(*)

(*)

(*)

(**)

(**)

(*)

B: Baseline

p<0.016

Asterisks indicating statistically significant difference with Baseline:

P: Phasewise S: Stepwise

(*) p<0.005(**)

Figure 9: Summary of responses to the post-condition Likert
questions for each system.

insights into factors that either facilitated or hindered their ability
to steer the process.

6.2.1 Steering by Directly Editing AI’s Assumptions and Actions.
Participants appreciated the ability to directly edit the AI-generated
assumptions, thereby aligning the system’s operations with their
expectations. As P16 stated: “I could add any assumptions that I had
in mind and make it the AI’s assumptions.” This enabled users to
“steer the AI’s decision making process to different directions.” (P3).
For P11, the ability to edit assumptions fostered a more critical per-
spective towards them; conversely, in the baseline system where
the assumptions were fixed, they tended to accept them without
questioning, as P11 would “just go with it as opposed to being criti-
cal.” Furthermore, the baseline’s fixed assumptions were a source of
frustration, a sense of lack of control, and a barrier to effective inter-
action (P2, P9, P15, P16, P17). P16 expressed a preference for editing
the assumptions directly “instead of just trying to ask a [follow-
up] question,” and P9 noted that the ability to edit assumptions
eliminated the need for manually “engineering your prompts”.

The structured editing of assumptions, actions, and execution
plan enabled direct manipulation, explicit and fine-grained control
over the AI’s behavior. P5 expressed that it was easier to interact
with, since the assumptions were given and they just had to modify
which made the interaction “less talking and more clicking on but-
tons”. Participants appreciated being able to “edit something very
specific” (P8), such as a step in the execution plan, or “including the
pre-processing steps right beside the columns” (P7). Similarly, P12
found it difficult to make targeted edits in the absence of structure,
stating that “making small edits [in the Baseline] requires a lot of
tweaking.” Additionally, P6 reported that increased structure fa-
cilitated locating information and served as a memory aid. This
contrasts with the difficulties they experienced using the Stepwise
system which lacked the amount of structure used in the Phase-
wise system. With the Stepwise system, participants had to “find
the correct step to make an edit” or“find which column the assump-
tion refers to” (P6). P4 further indicated that the overall structure
provided in the Phasewise system “pushes me towards structured
analysis”, specifically “in terms of validating assumptions”.

While most participants were generally positive about direct and
fine-grained editing of assumptions, P2 and P4 preferred the AI to
update its assumptions via natural language queries. P4 additionally
criticized the Phasewise system for the inability to see results
update instantly after editing input/output assumptions.

6.2.2 Higher Perceived Control Through Step-by-Step Task Decom-

position. A distinct advantage observed with the Stepwise system
was the enhanced control participants reported over the data anal-
ysis process. This perception was mainly attributed to tackling the
task in smaller, manageable segments. For instance, P16 reported an
increased sense of control, by being able to “easily edit the assump-
tions and actions in each step.” Similarly, P11 felt “much happier”
and “more confident”, attributing it to the ability to “manipulate
steps naturally.” P10 also shared a sense of more control over the
AI, stating that they “were not scared” to make edits to what the AI
was doing, as “it was just a couple of lines,” and “it was more inviting
to edit the assumptions.” P17 mentioned that the Stepwise system
facilitated an iterative process “where [they] could easily go back
and change something”. While these reports indicate a perception
of enhanced control, actual control should be measured in future
work.

6.2.3 Steering by Manually Editing Code. Most participants appre-
ciated the ability to manually edit AI-generated code. P18 men-
tioned editing the AI-generated code was like “you’re taking over
from the AI.” These edits ranged from minor modifications, such
as manually changing a threshold or printing values, to more in-
volved changes such as using the Generate code feature to up-
date the logic behind a line of code. When using the Generate
code feature, participants (P1, P3, P4, P7, P8, P9 P11, P12, P17,
P18) selected a line of code and prompted the AI to update it
based on a provided natural language query. For instance, P9
selected df[df['company_location'] == 'US'] in their code
and prompted the AI with “can you change this line to look
for containing ‘US’ instead of strict equality?” P12 ex-
perienced increased control when using the Generate code feature
since they “could make very granular prompts”.

Improving Steering and Verification in AI-Assisted Data Analysis with Interactive Task Decomposition UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Participants preferred manually editing code for minor changes
over using the AI-steering methods provided in each system. Many
participants expressed frustration with the inability to directly edit
code in the baseline system. P7 stated, “if [the code] was editable,
I can just correct things which I know myself instead of prompting
again.” Notably, P10, unable to edit the AI-generated code directly
with the baseline, resorted to copying the desired code line, editing
it in the follow-up prompt, and then asking the AI to incorporate
the edited code. They found crafting a prompt for the specific
edit challenging, admitting, “I don’t really know how to prompt
it to get it do what I want.” However, in some cases, P3 and P10
indicated reasons for not wanting to edit the AI-generated code
and instead preferred using the AI-steering methods to make the
edits. P3 wanted “to make sure that [their edit] is consistent with the
rest of the code” and P10 stated, “I don’t like editing the code directly
when I haven’t written it.”

6.2.4 Preference for Conversational Steering. In some instances,
participants (P4, P5, P6, P8, and P11) specifically indicated a prefer-
ence for steering the AI through natural language prompts. They
favored the Conversational method of steering the AI over edit-
ing the structured assumptions, actions, or execution plans. For
example, P4 expressed difficulty in understanding how changes
to the assumptions in the Phasewise system, affected the LLM’s
output. In contrast, P4 had a more accurate mental model of how to
interact with the Conversational baseline, stating “I know exactly
how writing a prompt is going to affect it.” Others felt constrained
by the need to adhere to a specific structure, expressing a prefer-
ence for more free-form interactions. For instance, P8 described the
Conversational system as easier and faster for “directing the AI
using natural language”, compared to the Stepwise system where
they felt they were “trying to change the syntax of the AI.” Similarly,
P5 wanted to “intentionally write vague prompts and see how much
[the AI] understands.” P4 believed that the Conversational system
required less cognitive effort, stating “I don’t like spending that effort
to think about it.” P11 mentioned feeling “less critical” about them-
selves when using the Conversational tool, allowing the AI to
“go and figure it out” on their behalf. P11 elaborated: “I knew what
it was [that] I wanted it to consider, but when [the tool] is expecting
a structured input then I was more concerned with providing it in a
nice and structured manner.”

6.2.5 Avoiding Edits that Lead to Inconsistency or Regeneration. To
discover participant reasoning behind the selection of a particular
steering method from the available options, participants were asked
about their specific interactions after each task. We found that
participants avoided certain edits when using the Stepwise and
Phasewise systems in two cases:

• if they had previously edited downstream components and
then decided to update an upstream component, the system
ignored all downstream edits since regenerations proceed
from top to bottom.

• if they decided to make edits to downstream components
that conflicted with assumptions or code in upstream com-
ponents.

For example, P1 was worried whether the AI would “regenerate
everything else correctly” after updating a specific assumption. P12

mentioned that there was “no obvious way of going back without
redoing all of the earlier changes”. Similarly, P4 mentioned that
they “want to make sure that [their] changes propagate and stay.” P8
unexpectedly found that they lost downstream edits after making
an edit on the upstream components, expressing: “Oh! So when it
regenerated this, it forgot about [their previous edit].” Participants
expressed the need for bidirectional updates to maintain consistency
across different components after making an edit. For example,
when P18 was using the Stepwise system, they could not make
edits at the beginning of the problem, which felt natural to them,
because “everything underneath it will drop.” They preferred that
the system would just highlight parts that would be invalidated in
the downstream instead of regenerating everything. P10 expressed
concern about requiring to “read everything every time [they] made a
small change.” In contrast, P18 accepted previous components going
out of sync, as at that point they have “taken over from the AI” and
P5 appreciated the propagation of changes between components,
stating that they liked “how interconnected things were”.

6.3 Verification
In all systems, participants relied on reading and analyzing the
AI-generated code and inspecting the intermediary variables for
verification. The Stepwise system’s approach of breaking down
tasks into smaller steps, along with the side conversation feature
available in both Stepwise and Phasewise systems, improved par-
ticipants’ confidence in verification. The post-condition question-
naire items indicated that both Stepwise and Phasewise systems
significantly facilitated easier verification (Figure 9, Q2) of the gen-
erated solution compared to the baseline (Phasewise-vs-Baseline:
𝑝 = .016, 𝑑 = .47; Stepwise-vs-Baseline: 𝑝 = .016, 𝑑 = 1.44).

6.3.1 Verification through Reading Code and Asking Questions.
Reading the code line-by-line was a common verification method.
P12 mentioned that “you still have to read all the code and under-
stand what it’s doing” for verification. Participants mostly relied
on their own knowledge about Python and Pandas for verification,
as stated by P8: “you have to know how to code, because you have
to read the code and make sure it makes sense.” When P3 was asked
how they knew that they had successfully finished the task, they
responded “I inspected the code and found that it handled that edge
case correctly.” However, in many instances participants had dif-
ficulty understanding the AI-generated code, if it used idioms or
functions unfamiliar to the participant. Participants appreciated the
Ask Question feature in these situations. A majority of participants
(n=13) used this feature at least once to explain a portion of the
generated code. For example, when P9 was working on Task 2, they
stated: “I’ve never seen this function explode() so I’m just gonna
ask what does this do”’. Participants found the responses to their
queries useful. For example, P2 asked about the fillna() func-
tion and realized that the code was doing something undesirable
(replacing nan with "Unknown"). Furthermore, participants felt
the absence of the Ask Question feature when using the baseline
tool, where for instance P18 wanted to use a search engine, and
P6 mixed the main thread of the task with a comprehension ques-
tion: “I don’t understand [refers to code].” During the study, several
unanticipated, yet effective use cases of the Ask Question feature

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Kazemitabaar, et al.

emerged, such as P4 asking questions about an assumption, and
P12 requesting help with debugging by selecting part of the code
and asking “why this code produces an error.”

6.3.2 Inspecting Intermediary Variables. All participants used the
intermediary variable inspection feature available in all three sys-
tems for verification. Participants inspected variables to “compare
between turns” (P1), and to “see if [the system] has done the [opera-
tion] correctly” (P14). P12 mentioned that the verification process
was similar to “debugging” and P11 indicated that inspecting all the
dataframes significantly increases confidence in the process.

6.3.3 Steering for Verification. However, generated code was not
always easily verifiable. In some instances, the generated code
overwrote variables instead of creating new dataframes, which
interfered with variable inspection as only the final state of the
variable after code execution was displayed. In other cases, the
generated code directly computed the final result, without suffi-
cient decomposition of steps necessary for proper verification. For
example, P4 mentioned that “the way that [the system] is generating
code does not create useful intermediary dataframes ... it’s showing
me the end result”. In some cases this lead to unjustified reliance on
the generated code, as P3 mentioned: “I guess I would need to trust
in this case.”

Therefore, a recurring theme that emerged was participants
trying to update the code, through steering, to include more in-
formative and useful intermediary variables. For example, P16
added a new step to the execution plan to emit new outputs
and other relevant columns in addition to just showing the
final result. P4 added an explicit step to the execution plan
display couple of groups so I can manually verify . In-
terestingly, there were also several cases that participants just did
not understand the method used in the generated code, and there-
fore, asked the system to “come up with a more understandable
solution” (P6).

6.3.4 Focusing on Smaller Steps Facilitated Verification. The Step-
wise system provided a one-to-one mapping of code with the inter-
mediary variables for each step. Participants found that they can
easily “focus on each small step” (P15), improved their confidence
since they were forced to “think of edge cases along the way” (P9).
P5 mentioned that “having it step-by-step leads to more reflecting
from my side and verifying each block”. Granular decomposition
also helped with locating issues. It was “easier to figure out what is
going wrong” (P11), and “there was less margin of error” (P7). For P3,
the higher number of intervention points in the Stepwise system
helped their “results to be correct all the time.”

The step-by-step process was “more natural” (P11) and “felt a lot
more similar to how [they] would approach the analysis” (P9), because
“don’t usually solve the whole task at once.” (P10). Interestingly, P7
“felt less need for validation since [they are] inspecting after each step”.

Additionally, participants experienced less information overload:
“you get the blocks one-by-one so you are not overwhelmed by too
much information” (P5), and compared to the Phasewise system
which felt more like “debugging somebody else’s code than writing
my own code” (P10). However, several participants (P4, P5, P13, and
P18) were critical of the Stepwise system for not providing any
information about the upcoming next step. P18 stated that “I do not

want it to do everything at once, but I want to know what it’s gonna
do next” and P5 expressed reduced confidence for “not knowing the
steps in advance.”

6.3.5 Aggregated Information Helped with Verification. Many par-
ticipants (n=7) appreciated how the Phasewise system aggregated
descriptive statistics and assumptions for each column, finding that
these elements scaffolded the AI’s reasoning about the task. These
helped P15 “understand what are the different possibilities,” enabled
P6 to “see exactly how each column will be treated”, and “forced”
P3 “to see the data a bit better.” For example, in Task 3, P3 easily
found the "Unknown" genre problem in the descriptive statistics,
immediately updating the corresponding assumptions to handle it.
Furthermore, P9 justified the usefulness of the aggregated informa-
tion per columns by stating “it is something a lot of times you would
end up asking about anyways,” and P1 appreciated that it “gives you
a preview of everything together.”

However, some participants mentioned that the aggregated statis-
tics were a source of information overload. The post-condition ques-
tionnaires also indicated that they felt significantly overwhelmed
(Figure 9, Q8) by the amount of information displayed when using
the Phasewise system compared to the baseline (𝑝 = .008, 𝑑 = .11).
P16 felt “frustrated by the amount of things that [they] saw on the
screen” and P8 stated that “It could start getting quite cumbersome if
the dataset was large”. Similarly, P4 found the structure to be over-
whelming and some assumptions about columns were irrelevant to
what they were trying to do, and instead, they wanted the system
to contextually display the right amount of information.

6.3.6 Running Side Queries. The Run Side Query feature of the
Stepwise and Phasewise systems was the most frequently used
side conversation feature with 82 usages, compared to 26 usages
of Ask Question, and 17 usages of Generate Code. All participants
ran side queries at least once. About 75% (n=62) of the side queries
were to understand data and its limitations and 17% (n=14) were to
visualize data for inspection.

The Side Query feature facilitated a novel and effective work-
flow, especially when integrated with the editable assumptions,
actions, and execution plan in both systems. Participants used it
to “explore the dataset, validate assumptions, and add them to the
column breakdown” (P17), and “to build up assumptions and edit
the plan” (P10). P9 used the Side Query to plot the distribution of
a column and select a better threshold for filtering outliers. P13
mentioned gaining “more confidence after plotting histograms” and
found that the Side Query proved more beneficial in the Stepwise
system because it “forces me to check the outputs at every step” in
contrast to the Phasewise system. In the baseline system, without
the Side Query feature, P4 and P10 resorted to the main thread for
their verification queries. This experience led them to appreciate
the convenience of having the Side Query feature in a side panel,
which prevented interference with the main thread. Reflecting on
this, P10 highlighted that “it was not taking away from the history
of questions I’d established already” and expressed a desire to avoid
getting “off track with intervening stuff” in the baseline system.

6.3.7 Deferring Steering after Seeing Initial Results. Participants
frequently preferred to first see results before interacting with and
steering the AI tool. P6 highlighted that they “just want to see the

Improving Steering and Verification in AI-Assisted Data Analysis with Interactive Task Decomposition UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

result first and then trim it”. P18 wanted to “look at the result first
and if the result was nonsense then go back”. This was particularly
the case in the Phasewise and Stepwise systems, as P4 mentioned
that the system made them “go through all of these steps and spend
so much time before [they] could actually see the result.” P8 wished
to see the generated code because they did not trust the system
to generate correct code even if the execution plan was correct:
“part of me wants to just see what it does, even if the [execution] plan
looks reasonable, I know there’s gonna probably be errors.” Another
reason why participants wanted to defer steering, particularly in
the Phasewise system, was that the input/output assumptions or
the execution plan did not have enough details about how the AI
is going to “handle” or “calculate” something (P10, P14). Similarly,
P12 was not sure about something in the plan, so they said “I’m
going to generate first and see what happens.” Lastly, P4 indicated
that having a small working memory was why they preferred the
baseline system, where every interaction with the AI resulted in a
complete output to verify.

6.4 Summary of Results
Our study revealed that while there was no difference in task suc-
cess, completion time, or number of required verification hints,
participants felt significantly more in control of the data analysis
process when using the Phasewise and Stepwise systems com-
pared to the Conversational baseline. Overall, the results show
that both systems were preferred over the Conversational base-
line. However, because the Phasewise system led to significantly
higher information overload, the Stepwise system emerged as the
most balanced and effective of the three.

The study also highlighted the value of side conversations in the
AI-assisted data analysis process. The ability to run side queries
facilitated an iterative workflow of exploration, validation, and
updating of editable assumptions, particularly in the Stepwise
system. The Ask Question feature helped participants understand
the AI-generated code, while the Generate Code feature allowed
them to update the logic behind a line of code. In the absence of
side conversations, as in the baseline system, participants mixed
their queries with the main thread of the task.

In the Phasewise system, the organization of assumptions en-
abled direct and broad control and served as a memory aid. Par-
ticipants appreciated the aggregated descriptive statistics and as-
sumptions for each column, which helped them understand how
each column would be treated. However, the amount of information
displayed was also a source of overload for some participants.

The Stepwise system provided fine-grained control by breaking
down tasks into smaller, manageable segments. This improved
verification, as participants could focus on each small step and
consider edge cases along the way. However, a limitation of the
tool was the inability to see the next step in the process.

Finally, some participants preferred the Conversational system
for its simpler and more familiar mental model of how asking follow-
up questions would affect the AI’s output. They also appreciated
the flexibility of free-form interactions and the ability to see a result
faster. However, the inability to directly edit the AI-generated code
was a source of frustration.

7 Discussion and Implications for AI-Assisted
Data Analysis Tools

Our designs for the Phasewise and Stepwise systems, and their
evaluation against the Conversational tool, have provided us
with a deeper understanding of the trade-offs within the design
space of AI-assisted data analysis tools. This discussion will explore
these trade-offs, their impact on user preferences and interactions,
and suggest guidelines for design.

Our study finds that the key to designing AI-assisted data analy-
sis tools lies in providing the user with the necessary controls to
make informed decisions and maintain control over the process.
This echoes the longstanding positioning of the role of user inter-
face elements in interactive machine learning systems as providing
decision support [53, 78, 82]. Our study finds that in the specific
case of AI-assisted data analysis, decision support is subject to the
following key design questions:

• DQ1 Steering Points: At what points should the system
allow the user to intervene in the process and steer? How
frequently should these steering opportunities occur?

• DQ2 Steering Support: How does the user verify the cur-
rent state of the AI’s output and determine which direction
they should steer it? How should the tool facilitate users in
making informed decisions at each steering point?

• DQ3 Steering Modality: What interface affordances are
available for the user to steer the process? How structured
or flexible should the modality of their interaction be?

These are similar to the design questions regarding the num-
ber and nature of “choice points” within a data analysis workflow
generated by an earlier generation of tools termed Intelligent Dis-
covery Assistants (IDAs) [83]. We find that the choices users face
with IDAs (e.g., what type of regression or normalisation to apply
at a particular step) still exist within generative AI-assisted data
analysis, but they are embedded within the higher-level challenges
of steering, and are experienced by users as a secondary concern.

7.1 DQ1: Steering Points
One design question is at which points during the generation pro-
cess the user should reflect, check for correctness, and steer if
needed. Our Stepwise and Conversational tools can be seen as
two ends of a spectrum of intervention opportunities. The Stepwise
system offers steering points after each step of the analysis, allow-
ing for incremental adjustments. In contrast, the Conversational
tool aims to complete the task with minimal user interruption,
offering a chance to adjust only after attempting to solve the task.

Our results comparing user experiences with these systems re-
veals significant trade-offs. More frequent steering points increase
users’ confidence in the results and their sense of control over the
AI’s process. However, it demands more cognitive effort and delays
the final outcome due to the frequent pauses created by the inter-
vention points. Additionally, it may lead to premature decisions
as users commit to directions without understanding their future
impact. According to the Cognitive Dimensions of Notations frame-
work [26], this is a clear case of the system imposing “premature
commitment”. Indeed, our findings indicate varied user preferences
between the Conversational and Stepwise systems due to these
factors.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Kazemitabaar, et al.

To address this challenge and balance control with cognitive load,
AI-assisted data analysis tools could adopt a strategy that initially
attempts to solve the task without user intervention, followed by
a more interactive steering and verification phase with a rich set
of steering points. This is similar to the highly validated design
strategy of information visualization tools to provide an “overview
first”, and only later “details on demand” [85].

7.2 DQ2: Steering Support
At each steering point, users must verify whether the output is
correct, and if not, choose a steering action. How should the tool
facilitate the information seeking and exploration process that
is required for the user to make informed decisions? Tools for
verifying AI-generated content are termed “co-audit” [25]. Auditing
and verification are part of the analyst process of sensemaking [73]
and information foraging [72]. Critically, such processes are an
opportunistic mix of top-down hypothesis formation and bottom-
up hypothesis testing [21], with multiple activities proceeding in a
parallel, non-linear fashion. This is antagonised by the sequential

8 Limitations nature of chat interfaces.
Our exploration into the design space introduced side conver-

sations and the Run Side Query function to aid this process. Fur-
thermore, in the Phasewise system, the system displayed dataset
columns relevant to the user’s task, along with interactive descrip-
tive statistics. Moreover, the execution plan component suggested
optional steps for the user to consider adding before proceeding to
the next step, enhancing the decision-making process.

Our findings indicate that when the system provides timely, accu-
rate, and relevant information, it fosters a genuinely collaborative
experience. Conversely, displaying irrelevant information can re-
duce trust in the AI and potentially leading to information overload.
Users also risk becoming overly dependent on AI for guidance,
potentially neglecting critical information seeking which may lead
to poor decision making.

Participants noted their desire for the AI to act as an agent, aiding
in the assumption-building process at steering points. Future tools
could automatically retrieve assumptions by pinpointing specific,
relevant evidence to support informed decision-making without
overwhelming users. Additionally, these tools could help in access-
ing domain-specific knowledge pertinent to the data analysis task.
Lastly, tools should be transparent regarding the AI’s limitations in
sourcing all necessary information for optimal decision-making at
each decision point.

7.3 DQ3: Steering Modality
After the user has decided which direction to steer the AI, their next
action is to specify their intent to the AI. The design question here
is determining the right interface and modality for the user to steer
the AI. In response, we introduced two distinct interfaces: a free-
form text editor used in the Conversational system for maximal
flexibility, and structured editors in the Stepwise and Phasewise
systems. The structured editors contain the assumptions and actions
generated by the LLM’s chain-of-thought, allowing users to edit
them for steering.

Our results highlight the trade-offs between these approaches.
An unstructured and flexible modality reduces perceived cognitive

load, and allows users to be less self-critical when making edits.
Users can form a more straightforward mental model of how their
inputs steer the AI and receive immediate feedback. However, in-
creased flexibility shifts the responsibility of precise and effective
interaction onto the user. Users lose fine-grained control and may
have to engage in the challenging and time-consuming task of
prompt design [60, 103].

Depending on the generative AI and data analysis expertise of
the user, a range of steering methods may be appropriate. A poten-
tial approach could be adding the ability to switch between struc-
tured editing of assumptions or instructing the AI with free-form
queries. Moreover, to increase transparency in the user’s mental
model about how their edits affect the system, tools could enable
inspection of the underlying LLM prompts, and highlight how their
steering edits affect the information sent to the model. Lastly, ad-
vanced users might appreciate the ability to manually adjust the
underlying prompts. These design suggestions are complementary
to established prompting guidelines and practices (e.g., [66]).

We identified several limitations in our study and system design
that should be considered when interpreting the results.

8.1 Study Limitations
In our evaluation study, the tasks were manually made more com-
plex and less clean to always include errors when presented to the
AI tools to require further verification and steering. However, this
may have impacted the ecological validity of the the tasks. Another
challenge to ecological validity is our decision to provide the initial
NL query for each task, which does not reflect how these systems
would be used in practice, and reduced the opportunity for us to
study the consequences of divergent natural prompting strategies.
For our study, this was an acceptable trade-off as it guaranteed
that all participants would encounter the same steering and ver-
ification needs, which allowed clearer comparisons between the
different systems. It also allowed us to sidestep the issue of partici-
pant queries being unevenly “primed” by the task description [60].
Future work may relax this constraint to study a wider range of
participant prompting strategies.

Typicality and novelty preferences may have influenced how
participants ranked their preference of features or system [34]. Par-
ticipants might also be biased towards systems they believe are of
personal interest to the researcher (known as the “yours is better”
bias) [16]. As a mitigating measure, the researcher did not associate
themselves with the prototypes in this study and elicited reflections
grounded in participants’ concrete experiences rather than subjec-
tive perceptions [6]. These reflections were further corroborated
through screen recordings and usage logs [13, 62].

Participants only used each system for a short time (30 minutes
per system, not including the tutorial), which is typical of controlled
experiments in laboratory settings. These cannot capture long-term
effects [80]; some phenomena only emerge over long-term use and
some phenomena which appear to be salient with short-term use
erode over time. Consequently, future work could aim to cross-
validate our findings longitudinally using experience sampling [12]
or diary studies [75].

Improving Steering and Verification in AI-Assisted Data Analysis with Interactive Task Decomposition UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

8.2 System Limitations
During the study, we observed limitations in how the system prop-
agated users edits, both upstream and downstream. The first limi-
tation involved propagating changes from edited assumptions to
generated code, where in some cases the language model would
appear to ignore the edits. This is a fundamental failure mode of
generative AI systems, however, system implementations and in-
terfaces can exacerbate the issue. Complex prompting approaches
with many instructions can make it unlikely that the model iden-
tifies small changes to assumptions. Additionally, distinguishing
assumptions in the interface can set incorrect user expectations
around how a model attends to assumptions.

Another limitation of the system is that edits to downstream
code or assumptions are not propagated to upstream assumptions,
and if a user makes an earlier edit it will overwrite any subsequent
changes. The intention behind this prima facie design decision was
to present a simple model of “cause and effect” that represented
how completions were generated, namely, the context of any point
in the system is only that which appears before. Some participants
identified this limitation and it influenced their steering preferences,
choosing not to edit an assumption because it would clear changes
that had been made to code.

9 Conclusion
In this work, we explore the design space of AI-assisted data anal-
ysis tools by presenting two novel interfaces that aim to improve
steering and verification. Starting from the observation that task
decomposition is an emerging characteristic of recent LLM-based
systems, we developed two systems that explore different modes
of interactive task decomposition, each based on unique trade-offs.
The first, Stepwise, decomposes the problem step by step; the sec-
ond, Phasewise, decomposes the problem into logical phases. Our
evaluation demonstrates that users experienced a greater sense of
control and confidence with our systems in comparison to a chat-
based baseline. Still, task decomposition is not without preference
or cost. Some users prefer to work through the task incremen-
tally, whilst others prefer to see the plan upfront. Additionally,
highly-structured decomposition can introduce cognitive burden.
Consequently, we imagine that future AI interfaces will need to
support adaptive decomposition that reacts to the user and task.

References
[1] [n. d.]. ChatGPT Plugin for Notebook. https://web.archive.org/web/

20231216052624/https://noteable.io/chatgpt-plugin-for-notebook/. Accessed:
2023-12-16.

[2] Anaconda. 2024. Anaconda Assistant Launches to Bring Instant
Data Analysis, Code Generation, and Insights to Users. https:
//www.anaconda.com/blog/anaconda-assistant-launches-to-bring-instant-
data-analysis-code-generation-and-insights-to-users. Accessed: 2024-03-01.

[3] Zahra Ashktorab, Mohit Jain, Q Vera Liao, and Justin D Weisz. 2019. Resilient
chatbots: Repair strategy preferences for conversational breakdowns. In Pro-
ceedings of the 2019 CHI conference on human factors in computing systems.
1–12.

[4] Shraddha Barke, Michael B James, and Nadia Polikarpova. 2023. Grounded
copilot: How programmers interact with code-generating models. Proceedings
of the ACM on Programming Languages 7, OOPSLA1 (2023), 85–111.

[5] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. 2019.
AutoPandas: neural-backed generators for program synthesis. Proceedings of
the ACM on Programming Languages 3, OOPSLA (2019), 1–27.

[6] Michael H Bernhart, IGP Wiadnyana, Haryoko Wihardjo, and Imbalos Pohan.
1999. Patient satisfaction in developing countries. Social science & medicine 48,

8 (1999), 989–996.
[7] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.

Qualitative research in psychology 3, 2 (2006), 77–101.
[8] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Ti-

tus Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points,
Needs, and Design Opportunities. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems (<conf-loc>, <city>Honolulu</city>,
<state>HI</state>, <country>USA</country>, </conf-loc>) (CHI ’20). Associa-
tion for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.
1145/3313831.3376729

[9] Bhavya Chopra, Anna Fariha, Sumit Gulwani, Austin Z Henley, Daniel Perel-
man, Mohammad Raza, Sherry Shi, Danny Simmons, and Ashish Tiwari. 2023.
CoWrangler: Recommender System for Data-Wrangling Scripts. In Companion
of the 2023 International Conference on Management of Data. 147–150.

[10] Bhavya Chopra, Ananya Singha, Anna Fariha, Sumit Gulwani, Chris Parnin,
Ashish Tiwari, and Austin Z Henley. 2023. Conversational challenges in ai-
powered data science: Obstacles, needs, and design opportunities. arXiv preprint
arXiv:2310.16164 (2023).

[11] Anamaria Crisan, Brittany Fiore-Gartland, and Melanie Tory. 2020. Passing the
data baton: A retrospective analysis on data science work and workers. IEEE
Transactions on Visualization and Computer Graphics 27, 2 (2020), 1860–1870.

[12] Mihaly Csikszentmihalyi and Reed Larson. 1987. Validity and reliability of the
experience-sampling method. The Journal of nervous and mental disease 175, 9
(1987), 526–536.

[13] Mary Czerwinski, Eric Horvitz, and Edward Cutrell. 2001. Subjective duration
assessment: An implicit probe for software usability. In Proceedings of IHM-HCI
2001 conference, Vol. 2. 167–170.

[14] Databricks Assistant. 2024. Introducing Databricks Assistant, a context-aware AI
assistant. https://www.databricks.com/blog/introducing-databricks-assistant.
Accessed: 2024-03-01.

[15] DataChat. 2024. The no-code, generative AI platform for instant analytics.
https://datachat.ai/. Accessed: 2024-03-01.

[16] Nicola Dell, Vidya Vaidyanathan, Indrani Medhi, Edward Cutrell, and William
Thies. 2012. "Yours is better!" participant response bias in HCI. In Proceedings
of the sigchi conference on human factors in computing systems. 1321–1330.

[17] Michael A DeVito, Jeremy Birnholtz, Jeffery T Hancock, Megan French, and
Sunny Liu. 2018. How people form folk theories of social media feeds and what
it means for how we study self-presentation. In Proceedings of the 2018 CHI
conference on human factors in computing systems. 1–12.

[18] Victor Dibia. 2023. Lida: A tool for automatic generation of grammar-agnostic
visualizations and infographics using large language models. arXiv preprint
arXiv:2303.02927 (2023).

[19] Victor Dibia, Adam Fourney, Gagan Bansal, Forough Poursabzi-Sangdeh, Han
Liu, and Saleema Amershi. 2022. Aligning Offline Metrics and Human Judgments
of Value for Code Generation Models. arXiv preprint arXiv:2210.16494 (2022).

[20] David Donoho. 2017. 50 years of data science. Journal of Computational and
Graphical Statistics 26, 4 (2017), 745–766.

[21] Ian Drosos, Advait Sarkar, Xiaotong Xu, Carina Negreanu, Sean Rintel, and
Lev Tankelevitch. 2024. "It’s like a rubber duck that talks back": Understand-
ing Generative AI-Assisted Data Analysis Workflows through a Participatory
Prompting Study. In Proceedings of the 3rd Annual Meeting of the Symposium on
Human-Computer Interaction for Work (in press) (CHIWORK ’24). Association
for Computing Machinery, New York, NY, USA.

[22] Will Epperson, April Yi Wang, Robert DeLine, and Steven M Drucker. 2022.
Strategies for reuse and sharing among data scientists in software teams. In
Proceedings of the 44th International Conference on Software Engineering: Software
Engineering in Practice. 243–252.

[23] Alexander J Fiannaca, Chinmay Kulkarni, Carrie J Cai, and Michael Terry. 2023.
Programming without a Programming Language: Challenges and Opportunities
for Designing Developer Tools for Prompt Programming. In Extended Abstracts
of the 2023 CHI Conference on Human Factors in Computing Systems. 1–7.

[24] Marsha E Fonteyn, Benjamin Kuipers, and Susan J Grobe. 1993. A description
of think aloud method and protocol analysis. Qualitative health research 3, 4
(1993), 430–441.

[25] Andrew D Gordon, Carina Negreanu, José Cambronero, Rasika Chakravarthy,
Ian Drosos, Hao Fang, Bhaskar Mitra, Hannah Richardson, Advait Sarkar,
Stephanie Simmons, et al. 2023. Co-audit: tools to help humans double-check
AI-generated content. arXiv preprint arXiv:2310.01297 (2023).

[26] Thomas RG Green. 1989. Cognitive dimensions of notations. People and com-
puters V (1989), 443–460.

[27] Garrett Grolemund and Hadley Wickham. 2014. A cognitive interpretation of
data analysis. International Statistical Review 82, 2 (2014), 184–204.

[28] Ken Gu, Madeleine Grunde-McLaughlin, Andrew M McNutt, Jeffrey Heer, and
Tim Althoff. 2023. How do data analysts respond to ai assistance? a wizard-of-oz
study. arXiv preprint arXiv:2309.10108 (2023).

[29] Ken Gu, Ruoxi Shang, Tim Althoff, Chenglong Wang, and Steven M Drucker.
2024. How Do Analysts Understand and Verify AI-Assisted Data Analyses?
(2024).

https://web.archive.org/web/20231216052624/https://noteable.io/chatgpt-plugin-for-notebook/
https://web.archive.org/web/20231216052624/https://noteable.io/chatgpt-plugin-for-notebook/
https://www.anaconda.com/blog/anaconda-assistant-launches-to-bring-instant-data-analysis-code-generation-and-insights-to-users
https://www.anaconda.com/blog/anaconda-assistant-launches-to-bring-instant-data-analysis-code-generation-and-insights-to-users
https://www.anaconda.com/blog/anaconda-assistant-launches-to-bring-instant-data-analysis-code-generation-and-insights-to-users
https://doi.org/10.1145/3313831.3376729
https://doi.org/10.1145/3313831.3376729
https://www.databricks.com/blog/introducing-databricks-assistant
https://datachat.ai/

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Kazemitabaar, et al.

[30] Sumit Gulwani. 2011. Automating string processing in spreadsheets using
input-output examples. ACM Sigplan Notices 46, 1 (2011), 317–330.

[31] Sumit Gulwani and Mark Marron. 2014. Nlyze: Interactive programming by
natural language for spreadsheet data analysis and manipulation. In Proceedings
of the 2014 ACM SIGMOD international conference on Management of data. 803–
814.

[32] Philip J Guo, Sean Kandel, Joseph M Hellerstein, and Jeffrey Heer. 2011. Proac-
tive wrangling: Mixed-initiative end-user programming of data transformation
scripts. In Proceedings of the 24th annual ACM symposium on User interface
software and technology. 65–74.

[33] Andrew Head, Fred Hohman, Titus Barik, Steven M Drucker, and Robert DeLine.
2019. Managing messes in computational notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–12.

[34] Paul Hekkert, Dirk Snelders, and Piet CW Van Wieringen. 2003. ‘Most advanced,
yet acceptable’: Typicality and novelty as joint predictors of aesthetic preference
in industrial design. British journal of Psychology 94, 1 (2003), 111–124.

[35] Gan Keng Hoon, Loo Ji Yong, and Goh Kau Yang. 2020. Interfacing chatbot
with data retrieval and analytics queries for decision making. In RITA 2018:
Proceedings of the 6th International Conference on Robot Intelligence Technology
and Applications. Springer, 385–394.

[36] Edwin L Hutchins, James D Hollan, and Donald A Norman. 1985. Direct manip-
ulation interfaces. Human–computer interaction 1, 4 (1985), 311–338.

[37] Ji-Youn Jung, Sihang Qiu, Alessandro Bozzon, and Ujwal Gadiraju. 2022. Great
chain of agents: The role of metaphorical representation of agents in conver-
sational crowdsourcing. In Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems. 1–22.

[38] Jupyter AI. 2024. Jupyter AI, brings generative AI to Jupyter notebooks. https:
//jupyter-ai.readthedocs.io/en/latest/. Accessed: 2024-03-01.

[39] Kaggle. 2023. Kaggle: Your Machine Learning and Data Science Community.
https://www.kaggle.com/. Accessed: 2024-03-01.

[40] Eirini Kalliamvakou. 2022. Research: quantifying GitHub Copilot’s impact on
developer productivity and happiness. The GitHub Blog (2022).

[41] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: Interactive visual specification of data transformation scripts. In Proceedings
of the sigchi conference on human factors in computing systems. 3363–3372.

[42] Sean Kandel, Andreas Paepcke, Joseph M Hellerstein, and Jeffrey Heer. 2012.
Enterprise data analysis and visualization: An interview study. IEEE transactions
on visualization and computer graphics 18, 12 (2012), 2917–2926.

[43] Jan-Frederik Kassel and Michael Rohs. 2018. Valletto: A multimodal interface
for ubiquitous visual analytics. In Extended Abstracts of the 2018 CHI Conference
on Human Factors in Computing Systems. 1–6.

[44] Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang, Austin Z Henley, Paul Denny,
Michelle Craig, and Tovi Grossman. 2024. CodeAid: Evaluating a Classroom
Deployment of an LLM-based Programming Assistant that Balances Student
and Educator Needs. (2024).

[45] Mary Beth Kery, Amber Horvath, and Brad A Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists.. In CHI, Vol. 10. 3025453–3025626.

[46] Mary Beth Kery, Bonnie E John, Patrick O’Flaherty, Amber Horvath, and Brad A
Myers. 2019. Towards effective foraging by data scientists to find past analysis
choices. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. 1–13.

[47] Mary Beth Kery and Brad A Myers. 2017. Exploring exploratory programming.
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 25–29.

[48] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E John, and Brad A
Myers. 2018. The story in the notebook: Exploratory data science using a literate
programming tool. In Proceedings of the 2018 CHI conference on human factors
in computing systems. 1–11.

[49] Pranav Khadpe, Ranjay Krishna, Li Fei-Fei, Jeffrey T Hancock, and Michael S
Bernstein. 2020. Conceptual metaphors impact perceptions of human-AI col-
laboration. Proceedings of the ACM on Human-Computer Interaction 4, CSCW2
(2020), 1–26.

[50] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2016.
The emerging role of data scientists on software development teams. In Proceed-
ings of the 38th International Conference on Software Engineering. 96–107.

[51] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2017.
Data scientists in software teams: State of the art and challenges. IEEE Transac-
tions on Software Engineering 44, 11 (2017), 1024–1038.

[52] Sunnie SY Kim, Elizabeth Anne Watkins, Olga Russakovsky, Ruth Fong, and
Andrés Monroy-Hernández. 2023. "Help Me Help the AI": Understanding How
Explainability Can Support Human-AI Interaction. In Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems. 1–17.

[53] Rafal Kocielnik, Saleema Amershi, and Paul N Bennett. 2019. Will you accept an
imperfect ai? exploring designs for adjusting end-user expectations of ai systems.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
1–14.

[54] Laura Koesten, Kathleen Gregory, Paul Groth, and Elena Simperl. 2021. Talking
datasets–understanding data sensemaking behaviours. International journal of

human-computer studies 146 (2021), 102562.
[55] Himabindu Lakkaraju, Dylan Slack, Yuxin Chen, Chenhao Tan, and Sameer

Singh. 2022. Rethinking explainability as a dialogue: A practitioner’s perspective.
arXiv preprint arXiv:2202.01875 (2022).

[56] Jenny T Liang, Chenyang Yang, and Brad A Myers. 2023. Understanding the
usability of AI programming assistants. arXiv preprint arXiv:2303.17125 (2023).

[57] Q Vera Liao, Daniel Gruen, and Sarah Miller. 2020. Questioning the AI: informing
design practices for explainable AI user experiences. In Proceedings of the 2020
CHI conference on human factors in computing systems. 1–15.

[58] Q Vera Liao and Kush R Varshney. 2021. Human-centered explainable ai (xai):
From algorithms to user experiences. arXiv preprint arXiv:2110.10790 (2021).

[59] Mark Liffiton, Brad Sheese, Jaromir Savelka, and Paul Denny. 2023. CodeHelp:
Using Large Language Models with Guardrails for Scalable Support in Program-
ming Classes. arXiv:2308.06921 [cs.CY]

[60] Michael Xieyang Liu, Advait Sarkar, Carina Negreanu, Benjamin Zorn, Jack
Williams, Neil Toronto, and Andrew D Gordon. 2023. “What It Wants Me To
Say”: Bridging the Abstraction Gap Between End-User Programmers and Code-
Generating Large Language Models. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems. 1–31.

[61] Yang Liu, Tim Althoff, and Jeffrey Heer. 2020. Paths explored, paths omitted,
paths obscured: Decision points & selective reporting in end-to-end data analysis.
In Proceedings of the 2020 CHI conference on human factors in computing systems.
1–14.

[62] Wendy E Mackay. 1998. Triangulation within and across HCI disciplines. Human-
Computer Interaction 13, 3 (1998), 310–315.

[63] Damien Masson, Sylvain Malacria, Géry Casiez, and Daniel Vogel. 2024. Di-
rectgpt: A direct manipulation interface to interact with large language models.
(2024).

[64] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and
inter-rater reliability in qualitative research: Norms and guidelines for CSCW
and HCI practice. Proceedings of the ACM on human-computer interaction 3,
CSCW (2019), 1–23.

[65] Andrew M McNutt, Chenglong Wang, Robert A Deline, and Steven M Drucker.
2023. On the design of ai-powered code assistants for notebooks. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems. 1–16.

[66] Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin Choi, and Hannaneh
Hajishirzi. 2021. Reframing Instructional Prompts to GPTk’s Language. arXiv
preprint arXiv:2109.07830 (2021).

[67] Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2024. Read-
ing between the lines: Modeling user behavior and costs in AI-assisted program-
ming. (2024).

[68] Michael Muller, Ingrid Lange, Dakuo Wang, David Piorkowski, Jason Tsay,
Q. Vera Liao, Casey Dugan, and Thomas Erickson. 2019. How Data Science
Workers Work with Data: Discovery, Capture, Curation, Design, Creation. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New
York, NY, USA, 1–15. https://doi.org/10.1145/3290605.3300356

[69] Jakob Nielsen. 2006. Progressive disclosure. nngroup. com (2006).
[70] OpenAI. 2023. ChatGPT plugins. https://openai.com/blog/chatgpt-plugins#

code-interpreter. Accessed: 2024-03-01.
[71] Rock Yuren Pang, Ruotong Wang, Joely Nelson, and Leilani Battle. 2022. How

do data science workers communicate intermediate results?. In 2022 IEEE Visu-
alization in Data Science (VDS). IEEE, 46–54.

[72] Peter Pirolli and Stuart Card. 1999. Information foraging. Psychological review
106, 4 (1999), 643.

[73] Peter Pirolli and Stuart Card. 2005. The sensemaking process and leverage
points for analyst technology as identified through cognitive task analysis. In
Proceedings of international conference on intelligence analysis, Vol. 5. McLean,
VA, USA, 2–4.

[74] Xiaoying Pu, Sean Kross, Jake M Hofman, and Daniel G Goldstein. 2021. Data-
mations: Animated explanations of data analysis pipelines. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1–14.

[75] John Rieman. 1993. The diary study: a workplace-oriented research tool to guide
laboratory efforts. In Proceedings of the INTERACT’93 and CHI’93 conference on
Human factors in computing systems. 321–326.

[76] Adam Rule, Aurélien Tabard, and James D Hollan. 2018. Exploration and expla-
nation in computational notebooks. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. 1–12.

[77] Daniel M Russell, Mark J Stefik, Peter Pirolli, and Stuart K Card. 1993. The
cost structure of sensemaking. In Proceedings of the INTERACT’93 and CHI’93
conference on Human factors in computing systems. 269–276.

[78] Advait Sarkar. 2016. Interactive analytical modelling. Technical Report UCAM-
CL-TR-920. University of Cambridge, Computer Laboratory. https://doi.org/10.
48456/tr-920

[79] Advait Sarkar. 2022. Is explainable AI a race against model complexity?. In Work-
shop on Transparency and Explanations in Smart Systems (TeXSS), in conjunction
with ACM Intelligent User Interfaces (IUI 2022) (CEUR Workshop Proceedings,
3124). 192–199. http://ceur-ws.org/Vol-3124/paper22.pdf

https://jupyter-ai.readthedocs.io/en/latest/
https://jupyter-ai.readthedocs.io/en/latest/
https://www.kaggle.com/
https://arxiv.org/abs/2308.06921
https://doi.org/10.1145/3290605.3300356
https://openai.com/blog/chatgpt-plugins##code-interpreter
https://openai.com/blog/chatgpt-plugins##code-interpreter
https://doi.org/10.48456/tr-920
https://doi.org/10.48456/tr-920
http://ceur-ws.org/Vol-3124/paper22.pdf

Improving Steering and Verification in AI-Assisted Data Analysis with Interactive Task Decomposition UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

[80] Advait Sarkar. 2023. Should Computers Be Easy To Use? Questioning the
Doctrine of Simplicity in User Interface Design. In Extended Abstracts of the 2023
CHI Conference on Human Factors in Computing Systems (Hamburg, Germany)
(CHI EA ’23). Association for Computing Machinery, New York, NY, USA, Article
419, 10 pages. https://doi.org/10.1145/3544549.3582741

[81] Advait Sarkar, Andrew D Gordon, Carina Negreanu, Christian Poelitz, Sruti Srini-
vasa Ragavan, and Ben Zorn. 2022. What is it like to program with artificial
intelligence? arXiv preprint arXiv:2208.06213 (2022).

[82] Advait Sarkar, Mateja Jamnik, Alan F Blackwell, and Martin Spott. 2015. In-
teractive visual machine learning in spreadsheets. In 2015 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 159–163.

[83] Floarea Serban, Joaquin Vanschoren, Jörg-Uwe Kietz, and Abraham Bernstein.
2013. A survey of intelligent assistants for data analysis. ACM Computing
Surveys (CSUR) 45, 3 (2013), 1–35.

[84] Vidya Setlur and Melanie Tory. 2022. How do you converse with an analytical
chatbot? revisiting gricean maxims for designing analytical conversational
behavior. In Proceedings of the 2022 CHI conference on human factors in computing
systems. 1–17.

[85] Ben Shneiderman. 2003. The eyes have it: A task by data type taxonomy for
information visualizations. In The craft of information visualization. Elsevier,
364–371.

[86] Sangho Suh, Meng Chen, Bryan Min, Toby Jia-Jun Li, and Haijun Xia. 2024.
Structured Generation and Exploration of Design Space with Large Language
Models for Human-AI Co-Creation. (2024).

[87] Sangho Suh, Bryan Min, Srishti Palani, and Haijun Xia. 2023. Sensecape: En-
abling multilevel exploration and sensemaking with large language models. In
Proceedings of the 36th Annual ACM Symposium on User Interface Software and
Technology. 1–18.

[88] Jiao Sun, Q Vera Liao, Michael Muller, Mayank Agarwal, Stephanie Houde,
Kartik Talamadupula, and Justin D Weisz. 2022. Investigating explainability
of generative AI for code through scenario-based design. In 27th International
Conference on Intelligent User Interfaces. 212–228.

[89] Lev Tankelevitch, Viktor Kewenig, Auste Simkute, Ava Elizabeth Scott, Advait
Sarkar, Abigail Sellen, and Sean Rintel. 2024. The Metacognitive Demands and
Opportunities of Generative AI. (2024).

[90] Yuan Tian, Zheng Zhang, Zheng Ning, Toby Jia-Jun Li, Jonathan K Kummerfeld,
and Tianyi Zhang. 2023. Interactive text-to-SQL generation via editable step-
by-step explanations. arXiv preprint arXiv:2305.07372 (2023).

[91] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation
vs. experience: Evaluating the usability of code generation tools powered by
large language models. In Chi conference on human factors in computing systems
extended abstracts. 1–7.

[92] Helena Vasconcelos, Gagan Bansal, Adam Fourney, Q Vera Liao, and Jen-
nifer Wortman Vaughan. 2023. Generation probabilities are not enough: Explor-
ing the effectiveness of uncertainty highlighting in AI-powered code comple-
tions. arXiv preprint arXiv:2302.07248 (2023).

[93] April Yi Wang, Anant Mittal, Christopher Brooks, and Steve Oney. 2019. How
data scientists use computational notebooks for real-time collaboration. Pro-
ceedings of the ACM on Human-Computer Interaction 3, CSCW (2019), 1–30.

[94] Dakuo Wang, Josh Andres, Justin D Weisz, Erick Oduor, and Casey Dugan. 2021.
Autods: Towards human-centered automation of data science. In Proceedings of
the 2021 CHI conference on human factors in computing systems. 1–12.

[95] Jiawei Wang, Tzu-yang Kuo, Li Li, and Andreas Zeller. 2020. Assessing and restor-
ing reproducibility of Jupyter notebooks. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. 138–149.

[96] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-
ing in large language models. Advances in neural information processing systems
35 (2022), 24824–24837.

[97] Yifan Wu, Joseph M Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging
code and interactive visualization in computational notebooks. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology.
152–165.

[98] Kai Xiong, Siwei Fu, Guoming Ding, Zhongsu Luo, Rong Yu, Wei Chen, Hujun
Bao, and Yingcai Wu. 2022. Visualizing the scripts of data wrangling with
SOMNUS. IEEE Transactions on Visualization and Computer Graphics (2022).

[99] Cong Yan and Yeye He. 2020. Auto-suggest: Learning-to-recommend data
preparation steps using data science notebooks. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 1539–1554.

[100] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R
Narasimhan, and Yuan Cao. 2022. ReAct: Synergizing Reasoning and Act-
ing in Language Models. In The Eleventh International Conference on Learning
Representations.

[101] Ryan Yen, Jiawen Zhu, Sangho Suh, Haijun Xia, and Jian Zhao. 2023. CoLadder:
Supporting Programmers with Hierarchical Code Generation in Multi-Level
Abstraction. arXiv preprint arXiv:2310.08699 (2023).

[102] Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen
Shi, Joshua Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, et al.

2022. Natural language to code generation in interactive data science notebooks.
arXiv preprint arXiv:2212.09248 (2022).

[103] JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny can’t prompt: how non-AI experts try (and fail) to design
LLM prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. 1–21.

[104] Amy X Zhang, Michael Muller, and Dakuo Wang. 2020. How do data science
workers collaborate? roles, workflows, and tools. Proceedings of the ACM on
Human-Computer Interaction 4, CSCW1 (2020), 1–23.

[105] Qiyu Zhi and Ronald Metoyer. 2020. Gamebot: A visualization-augmented
chatbot for sports game. In Extended Abstracts of the 2020 CHI Conference on
Human Factors in Computing Systems. 1–7.

https://doi.org/10.1145/3544549.3582741

	Abstract
	1 Introduction
	2 Related Work
	2.1 AI-assisted Data Analysis
	2.2 Verifying LLM Outputs and their Reliability
	2.3 Steering LLMs

	3 Formative Study
	3.1 Results
	3.2 Design Goals and Rationale

	4 System Design
	4.1 Core System Features
	4.2 Conversational Baseline System
	4.3 System Implementation

	5 User Evaluation
	5.1 Participants
	5.2 Data Analysis Tasks
	5.3 Study Procedure
	5.4 Data Collection and Analysis

	6 Results
	6.1 Task Completion
	6.2 Steering and Control
	6.3 Verification
	6.4 Summary of Results

	7 Discussion and Implications for AI-Assisted Data Analysis Tools
	7.1 DQ1: Steering Points
	7.2 DQ2: Steering Support
	7.3 DQ3: Steering Modality

	8 Limitations
	8.1 Study Limitations
	8.2 System Limitations

	9 Conclusion
	References

