
Improving Steering and Verification in AI-Assisted Data Analysis 
with Interactive Task Decomposition 

Majeed Kazemitabaar Jack Williams Ian Drosos 
University of Toronto Microsoft Research Microsoft Research 

Toronto, Ontario, Canada Cambridge, UK Cambridge, UK 
majeed@dgp.toronto.edu jack.williams@microsoft.com t-iandrosos@microsoft.com 

Tovi Grossman Austin Z. Henley Carina Negreanu 
University of Toronto Microsoft Research Microsoft Research 

Toronto, Ontario, Canada Redmond, Washington, USA Cambridge, UK 
tovi@dgp.toronto.edu austinhenley@microsoft.com cnegreanu@microsoft.com 

Advait Sarkar 
Microsoft Research 
Cambridge, UK 

advait@microsoft.com 

Figure 1: An illustration of the three decomposition approaches that we developed for solving data analysis tasks using AI: (A) 
Conversational approach solves the entire task without any user intervention but allows submitting follow-up prompts 
for further steering. (B) Stepwise approach provides intervention points at each step of solving the task by presenting pairs 
of editable assumptions followed by corresponding code at each step. (C) Phasewise approach provides intervention points 
at each phase of solving the entire task with three editable components: editable assumptions of the entire task structured 
around relevant columns of the dataset, editable task execution plan, and corresponding code. 
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Abstract 
LLM-powered tools like ChatGPT Data Analysis, have the potential 
to help users tackle the challenging task of data analysis program-
ming, which requires expertise in data processing, programming, 
and statistics. However, our formative study (n=15) uncovered seri-
ous challenges in verifying AI-generated results and steering the 
AI (i.e., guiding the AI system to produce the desired output). We 
developed two contrasting approaches to address these challenges. 
The first (Stepwise) decomposes the problem into step-by-step 
subgoals with pairs of editable assumptions and code until task 
completion, while the second (Phasewise) decomposes the entire 
problem into three editable, logical phases: structured input/out-
put assumptions, execution plan, and code. A controlled, within-
subjects experiment (n=18) compared these systems against a con-
versational baseline. Users reported significantly greater control 
with the Stepwise and Phasewise systems, and found intervention, 
correction, and verification easier, compared to the baseline. The 
results suggest design guidelines and trade-offs for AI-assisted data 
analysis tools. 
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1 Introduction 
Data science often involves large datasets, source code, domain ex-
pertise, and unwritten assumptions [68]. The process of extracting 
insights from data [94] for decision making and knowledge discov-
ery [20] has several documented challenges [8, 68]. Data scientists 
spend considerable time inspecting data, writing single-use scripts, 
“gluing together” data sources, cleaning messy data, and document-
ing their efforts [8, 47, 48, 68]. In fact, data scientists describe the 
need to “have a conversation” with their data to understand it [68]. 

Recent advancements in AI and particularly the natural language 
processing and code generation capabilities of Large Language 
Models (LLMs) have shown promise to facilitate data science tasks. 
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Specifically, chain-of-thought prompting [96] and ReAct prompt-
ing [100] have emerged as implementation techniques for task 
decomposition, generating “reasoning” traces, followed by “acting” 
traces where the LLM can invoke external agents. In data science, 
such agents might read from datasets and execute code. For exam-
ple, ChatGPT Data Analysis supports uploading CSV files, after 
which its language model and code execution agents can be used 
to clean data, display visualizations, and answer questions about 
data through its iterative chat interface [70]. 

However, a study of data scientists using ChatGPT without code 
execution functionality found that participants were unaware of 
the AI’s assumptions when solving the task, found verifying the 
correctness of results tedious, were overwhelmed by long responses, 
and could not effectively steer the AI when it made mistakes [10]. 

To better understand user behavior, needs, and challenges when 
performing exploratory data analysis with a conversational AI tool, 
we conducted a formative study involving 15 participants (Sec-
tion 3). The study identified steering and verification as the primary 
limitations of conversational AI tools. Steering refers to the user’s 
interaction with the AI to guide its output from an initial state to 
a desired outcome. Verification refers to the user’s interaction to 
understand the AI’s output, check its correctness, ensure no incor-
rect assumptions were used, and decide on further refinement. The 
study also highlighted the need for new affordances that decompose 
and display the AI’s chain-of-thought reasoning as structured and 
interactive assumptions, enabling users to modify them at any time, 
even retroactively. 

Based on this core requirement we developed two systems that 
make “decomposition” a focal point in the interface, not just an 
implementation detail (Section 4). First, the Phasewise system 
decomposes the problem into three editable phases (assumptions, 
planning, and code) with increasing levels of specificity. Second, 
the Stepwise system decomposes the task into separate steps (vi-
sually similar to a computational notebook), displaying editable 
assumptions and their corresponding code one step at a time until 
the task is complete. 

Both approaches use the LLM to decompose the task into parts, 
and help the user focus on one part at a time (as a metacognitive 
aid [89]). This enables finer-grained steering than standard con-
versational prompting [103], and progressive disclosure to reduce 
information overload [69]. We introduce the idea of using the LLM 
to generate editable assumptions about the input and desired output, 
based on the task query and data. This also provides a structure 
for verifying that the AI correctly interpreted the user’s intent and 
translated it into a valid plan. However, when decomposing a task, 
there is an important space of trade-offs: how much information to 
display, when to display it, and how many intervention points to 
provide with how much control. Our two systems occupy different 
points in this space, and through our user study, we evaluated the 
trade-offs and identified different situations in which each approach 
might be beneficial (Sections 5 and 6). 

We conducted a controlled, within-subjects experiment (n=18) 
comparing the Stepwise and Phasewise tools on task decomposi-
tion and prompting strategies that support steering, verification, 
and the user’s perceived utility of the tools. We also developed a 
baseline tool, called Conversational, similar to ChatGPT with 
code execution. Users reported significantly greater control with 
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the two new systems, and found intervention, correction, and veri-
fication easier, compared to the baseline. 

This paper makes the following contributions: 
• A formative study that identifies the limitations of “conver-
sational” AI tools in terms of steering them and verifying 
their output. 

• A novel approach to improve steering and verification using 
editable AI assumptions, progressive disclosure, and non-
linear conversations to promote data exploration and verifi-
cation. We describe two implementations of this approach, 
each balancing information overload and the degree of user 
control differently (Section 4). 

• A within-subjects experiment in which we compared the 
two systems with a Conversational baseline system (Sec-
tion 5), finding that while there was no difference in task 
success or completion time, participants felt significantly 
more in control with the Phasewise and Stepwise systems 
compared to the baseline (Section 6). 

2 Related Work 

2.1 AI-assisted Data Analysis 
Previous work has considered how data transformation scripts 
can be synthesized from demonstrations (e.g., Wrangler [32, 41]). 
This follows an influential line of research that synthesizes pro-
grams from examples in data wrangling contexts (e.g., [30]), which 
may include natural language [31]. These can be constrained to 
use specific APIs such as pandas, using generator-based synthesis 
(e.g., AutoPandas [5]). Scripts can also be synthesized based on 
heuristics of data quality improvement (e.g, CoWrangler [9]), and 
data preparation heuristics can also be learned from corpora (e.g., 
Auto-Suggest [99]). 

More recently, a number of commercialized LLM supported data 
analysis tools have become available. These enable data scientists 
to access AI-powered chat assistants within their notebook (such 
as Anaconda [2], Databricks [14], and Jupyter AI [38]), and other 
alternate data-science environments (e.g., DataChat AI [15], SQL 
and file editors for Databricks, etc.). The semantic abilities of LLMs, 
coupled with a chat interface, allows conversational interaction 
with data, follow-up questions, and highly contextualized responses. 
Consequently, research has investigated the chatbot paradigm for 
AI assistance in data analysis and visualization in detail [18, 28, 35, 
43, 84, 105]. 

Thus, early work on data wrangling script synthesis can be con-
trasted with current LLM-powered data analysis tools both in terms 
of the complexity of tasks being tackled, and the interaction modal-
ity (i.e., from demonstration, examples, and direct manipulation, to 
naturalistic language prompts). In turn, this also means that gener-
ation mistakes become more common, due to underspecification of 
natural language, assumptions that the AI is making but the user is 
not aware of, etc. This creates new metacognitive demands for the 
user to verify the AI’s responses and then steer the AI if incorrect. 
In our work, we try to provide new interaction modalities with 
LLMs for data analysis tasks to increase the transparency of the AI 
and the assumptions that it is making. 

McNutt et al. [65] present a design space for AI code assistance 
in computational notebooks, which are commonly used for data 

analysis. They find that AI assistants can vary in the gestures they 
provide for the user to initiate a model response, and options that 
the user has to verify and refine the output. They also consider 
the relationship between the assistant interface and other interface 
components, such as code context, specialization, provenance, and 
customization. 

Though not specifically tackling data analysis, Sarkar et al. [81] 
studied the experiences of programmers using LLM assistance for 
writing code. They found that LLM assistance was most useful in 
rewriting boilerplate code and in API discovery, but also brought 
new challenges for debugging and code inspection. Sarkar et al. 
also identify prompt formulation as a major challenge. Fiannaca et 
al. [23] describe methods for how this can be improved by lever-
aging semantically meaningful structure within prompts to assist 
programmers. 

Similarly, Vaithilingam et al. [91] found that while programmers 
preferred LLM-assisted programming to unassisted programming, 
there were no consistent improvements in task time or success rate, 
due to productivity benefits being opposed by new challenges in 
debugging and comprehension of AI-generated code. A detailed 
telemetric study of GitHub Copilot usage by Mozannar et al. [67] 
similarly found that the “verifying suggestion” state is the most 
time consuming. 

There have been other studies of AI-assisted programming [4, 19, 
40, 56]. Many of these point to steering and verification as general 
challenges with all LLM-assisted programming, which also apply 
in the specific case of programming data analysis scripts with LLM 
assistance. 

However, it is worth noting that data analysis does have par-
ticularities in comparison to “general” programming tasks, e.g., 
data analysis programming tends to be more exploratory and open-
ended, and the activity of analyst sensemaking and insight genera-
tion is more important than providing code as a finished product 
[22, 27, 42, 47, 54, 61, 73, 76, 77]. The implication of this is that the 
need for rapid steering and verification is more acute in data analy-
sis programming, since the effectiveness of the process depends on 
rapid exploration of the program space. 

2.2 Verifying LLM Outputs and their Reliability 
Data science is a challenging yet important function within soft-
ware teams. Previous research has focused on how data scientists 
engage in collaborative sensemaking, and make choices about how 
to communicate and report results [11, 50, 51, 71, 93, 104]. They 
have found that data scientists need support in managing these 
complex collaborative workflows [46, 48, 95]. Consequently, re-
search has explored how data scientists can manage, visualize, and 
trace the evolution of their analysis process [33, 45, 74, 97, 98]. 

Working with an AI assistant may have important differences 
from a human team. Trust in AI systems is developed differently 
from trust in human collaborators and is mediated by the conceptual 
metaphors used to convey them [37, 49]. Trust, communication, 
and perception management in human collaborations may result 
in a lack of code verification behaviours, or selective sharing [17, 
61, 65, 71, 93]. This raises the importance of additional tools for 
verifying AI generated output, for instance “co-audit” tools [25]. 
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Previous research has noted the importance of explainability in 
AI to support user tasks and decision-making [52, 57, 58]. There 
are difficulties in applying traditional explainability techniques to 
large language models due to their large number of parameters, 
training sets, and complex and open-ended space of inputs and 
outputs [19, 79, 88, 92]. Research has also explored the challenges 
non-experts face in prompting and conversational strategies for 
explainability [3, 55, 103]. 

Furthermore, previous research on AI coding assistants empha-
sizes that engaging users in verifying the process of how the AI 
generates code can maximize user experience, efficiency, and the 
predictability of obtaining a helpful response [44]. For instance, 
CodeHelp [59] incorporates a Sufficiency Check step that engages 
users in refining the AI’s understanding of the task by prompting 
them to clarify uncertainties or provide missing context. 

Gu et al. [29] created a design probe similar to ChatGPT Data 
Analysis [70] with an added sidebar for inspecting intermediary 
variables. They conducted a study with 22 participants using the 
design probe to understand common behaviors for verifying the 
AI’s response to a natural language query and dataset. They found 
two main behaviors within the verification workflow: procedural-
oriented and data-oriented which in many cases were tightly cou-
pled and participants frequently switched between an intermediary 
variable and the code that outputted it. In contrast with how data 
analysts verify their work in any tool-assisted (non-AI) data analy-
sis workflows, there is now a much bigger demand for verification 
when users “offload” an entire data analysis task to an LLM. 

In our work, we explicitly ask the AI to show its assumptions 
and reasoning in a structured (and editable) way, paired with their 
corresponding actions, so that users could focus on them and make 
decisions. We also include features such as “side queries” that allow 
users to pose exploratory questions, build up assumptions, and then 
add those assumptions to the AI generation workflow. 

2.3 Steering LLMs 
Currently, most commercial LLM tools (e.g., ChatGPT Data Analysis 
[70] or ChatGPT with Noteable [1]) use a turn-based conversational 
method, where the AI attempts to solve problems with minimal in-
tervention points. Typically, users can only steer the AI after it has 
generated an entire solution, using follow-up prompts, which limits 
steering control. To address such limitations, Masson et al. [63] 
propose principles of direct manipulation [36] for steering LLMs 
in other contexts: continuous representation of objects of interest, 
physical actions to localize prompt effects, and reusable prompts. 
Furthermore, research on the metacognitive demands of generative 
AI identifies decomposition and structured generation as potential 
aids [89]. Suh et al. [87] explore hierarchical text generation at 
different abstraction levels to assist with sensemaking and man-
aging information overload from large text quantities. They also 
introduce structured generation [86], where user’s prompt is first 
used to generate dimensions that make the model’s responses vary, 
and then responses are generated according to those dimensions. 

Specifically in the context of AI-assisted programming, Liu and 
Sarkar et al. [60] introduce “grounded abstraction matching,” al-
lowing users to steer LLMs by editing natural language utterances 
grounded in each step of AI-generated code for data analysis in 

spreadsheets. Similarly, Tian et al. developed Steps, which lets 
users edit step-by-step explanations of AI-generated SQL code from 
natural language queries [90]. CoLadder [101] aids experienced pro-
grammers in externalizing their problem-solving intentions flexibly, 
enhancing their ability to evaluate and modify code across various 
abstraction levels, from goal to final code implementation. These 
methods enable users to edit natural language prompts grounded in 
each step of AI-generated code, providing an accessible abstraction 
level for reading, verifying, and editing. 

However, these approaches hide the AI’s reasoning and decom-
position process, leaving users without insight into the “how” and 
“why” behind the generated code. Users are left to manually infer 
the AI’s reasoning from the output and determine explicit actions 
to edit and refine the grounded utterances. While this might be an 
acceptable trade-off in systems that generate short programs (e.g., 
typical spreadsheet formulas or SQL queries), it is unclear how this 
approach would extend to longer and more complex data analysis 
scripts. Our work expands this design space by not only displaying 
the AI’s assumptions in a structured way but also enable users to 
directly edit these assumptions as a novel method of steering the 
AI to control its output. 

3 Formative Study 
To explore the challenges of data analysis with conversational AI 
assistants, we conducted a formative study with 15 participants (12 
male, 3 female, 0 non-binary) using the Noteable plugin for Chat-
GPT [1]. At the time of the study, Noteable was the only publicly 
available tool offering features similar to ChatGPT Data Analysis 
(formerly Code Interpreter). With Noteable, participants could up-
load datasets to a Noteable project and enter a natural language (NL) 
descriptions of their data analysis task in ChatGPT. In response, 
ChatGPT would generate code cells in the Noteable project, which 
Noteable would execute. ChatGPT then displayed Noteable’s output 
including any tables or visualizations, and generated an interpreta-
tion of the results. ChatGPT would then continue generating code if 
the task was incomplete, or asked users for additional information 
if required. 

Participants (F1-F15), who were recruited from our research insti-
tute, regularly performed data analysis tasks using computational 
notebooks and Python data science libraries. Each participant was 
assigned to one of four tasks commonly performed by data scien-
tists: data cleaning, merging and plotting, extracting insights, or 
training an ML model (see Table 1). 

Study sessions lasted approximately 60 minutes and were con-
ducted in-person. Screen activity was recorded. Participants were 
asked to think aloud [24], and audio data was recorded and tran-
scribed. Participant consent was obtained prior to the study and 
participants were each compensated with a GBP £25 Amazon gift 
card. The study protocol was approved by our institution’s ethics 
and compliance review board. 

3.1 Results 
We analyzed the interactions participants had with ChatGPT and 
the Noteable plugin from 301 total prompts. Participants used a mix 
of different actions which included (1) directing the AI to perform a 
data analysis task, (2) exploring the dataset, (3) requesting suggested 
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Table 1: Tasks used in the formative study in which users used ChatGPT with the Noteable plugin. 

Task Dataset Task Description Assigned Participants 
Data Cleaning food-choices.csv Fix columns with inconsistent formatting and prepare 

dataset for analysis. 
F5, F8, F9 

Merging and Plotting country-happiness.csv Merge the five happiness datasets on the country 
column and visualize the top countries with the moist 
changes in happiness score from 2015 to 2019. 

F10, F11, F12, F13 

Extracting Insights airbnb-nyc.csv Extract high-level spatial and temporal insights about 
price, availability, and distribution. 

F2, F3, F7, F15 

Training Model heart-disease.csv Train an explainable ML model to predict presence of 
heart disease and report the key factors contributing to 
the presence or absence of heart disease in patients. 

F1, F4, F6, F14 

methods or approaches to accomplish the task, (4) steering and 
repairing the AI process in how it should accomplish the task, and 
(5) performing verification on the results of the task (either with or 
without the AI). 

Steering: Participants steered the AI’s actions and methods using 
their NL prompts (106 prompts, 35%). Many of the steering prompts 
(n=34) were for performing data wrangling (cleaning and manip-
ulation) tasks on specific columns of the dataset. Similarly, some 
prompts (n=20) were used to explicitly add, remove, or change code 
produced in previous steps (e.g., “exclude the ones that are 
purely categorical” (F5)). For repairing mistakes the AI made or 
any miscommunications between human and AI, participants fre-
quently corrected an assumption the AI had made (36 prompts). For 
example, after ChatGPT generated data analysis code, F8 prompted 
ChatGPT that they wanted code that could “map each row to 
multiple classes and not just one closest class” instead. 

Data exploration: We identified 76 instances (25%) in which par-
ticipants wanted to inspect the data frames loaded into the notebook 
using natural language filters such as displaying “which country 
names are inconsistent” (F12), and “unique values in GPA 
column” (F8). Sometimes these explorations were in the form of 
visualizations, (e.g., requesting a “histogram of cholesterol 
levels” (F6)). 

Verification: Although the most common behavior for validating 
the AI’s process was reading the AI-generated code and inspecting 
the output, we also categorized 57 prompts (19%) as assisting with 
verification, such as: “The USA is missing from all these 
heat maps, is it also missing from the CSV files or 
not?” (F11). 

Code or Logic Explanation: In 21 prompts (7%), participants used 
the main thread of the conversation to ask the AI for explanations 
about code they did not understand, an algorithm that was used, 
how something was computed, or help interpreting the results. 

Furthermore, our results indicate that each participant engaged 
in linear conversations consisting, on average, 20 AI-generated 
messages (SD=5). They experienced lengthy responses upon each 
interaction point, averaging 24 lines of AI-generated code (SD=21, 
Max=152) and 134 words of the AI’s interpretation of the output 

(SD=104, Max=717). Participants often lost track of the long con-
versation history and struggled with finding, verifying, and fixing 
accumulated assumptions. As a result, they requested an “undo 
button” to fix accumulated assumptions made by the AI. Without 
this feature, they tried workarounds, asking the AI to “undo the 
last step” (F9) or to “ignore the previous data cleansing 
steps and do it from scratch” (F5). 

3.2 Design Goals and Rationale 
Our formative study highlighted steering and verification as the 
most common user interactions. Based on our findings, along with 
relevant prior work and how such AI tools use chain-of-thought 
prompting for task decomposition and execution, we established the 
following design goals to enhance user control over the AI-assisted 
data analysis process. 

First, participants struggled to understand the AI’s reasoning. 
They often tried to manually infer the underlying assumptions from 
its generated code, verify them, and then correct them with follow-
up prompts. This was evident from the 36 prompts that they used 
to explicitly fix incorrect assumptions made by the AI. Therefore, 
DG.1 proposes visually separating each different assumption from its 
corresponding actions (code) and allowing users to directly edit and 
update them. 

Second, participants were overwhelmed by long responses and 
lost track of the long conversation history. Consistent with previous 
studies [10], DG.2 recommends adding intervention points in the 
AI’s responses to help users focus on smaller information chunks. 
Additionally, steering operations should update only relevant sections 
at each intervention point, rather than adding new outputs to the 
main thread. 

Lastly, participants frequently used prompts for data exploration, 
result verification, and code explanation. While these were useful, 
they often derailed the main conversation thread from solving 
the task. To address this, DG.3 suggests enabling side conversations 
and other methods to assist users in verifying assumptions without 
cluttering the main thread. 
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Figure 2: The starting input for all systems, which includes a 
button to upload datasets a , selectable datasets to be included in 
the analysis b , and a text input for entering the natural language 
description that specifies the data analysis task c . 

4 System Design 
We address design goal DG.1 through interactive task decomposi-
tion. This involves: (1) prompting the LLM to generate its chain-of-
thought reasoning as NL assumptions and corresponding actions 
about the input task and dataset; and (2) rendering the LLM’s output 
as structured, editable UI components, allowing users to refine the 
AI’s proposed plan. We refer to these as editable assumptions that 
represent the AI’s reasoning based on the task and dataset (e.g., 
pattern of values in a dataset column.) 

In addressing DG.2 to provide proper intervention points, we en-
counter trade-offs in balancing the number, amount of information 
presented, and the degree of control provided at each interven-
tion point. This led us to develop two alternative approaches. The 
Phasewise system, which gives users greater control over the 
entire analysis plan from the outset, but with fewer intervention 
points, and requires the user to understand more information at 
each step. Conversely, the Stepwise allows more focused control 
by decomposing the task into step-by-step subgoals, increasing 
intervention opportunities, reducing the information overload per 
step, but with less structured control over the entire task. 

Similarly, to address DG.3, we balanced the amount of informa-
tion displayed for verification and decision making at each inter-
vention point. The Phasewise system aids AI-based information re-
trieval by displaying relevant dataset columns, allowing inspection 
of column statistics and AI assumptions, as well as distinguishing 
required and suggested steps in the execution plan. To support 
user-led exploration in both systems, we allocated a “sidebar” on 
the ride side of the screen where users can: (a) select portions of the 
AI-generated code and ask questions about them; (b) ask natural 
language queries for data exploration; and (c) generate code from 
natural language description for the user to manually incorporate 
into the AI-generated code. 

In the following, sections we outline the core features shared be-
tween the Phasewise and Stepwise systems, and explain how they 
differ. Lastly, we describe the Conversational system, serving as 
a baseline similar to ChatGPT’s Advanced Data Analysis plugin for 
our user evaluation. 

4.1 Core System Features 

4.1.1 Task Input. Data analysis begins with dataset(s) and a task 
specification. Dataset Input: Data is loaded using the Input Query 

Figure 3: Overview of the Phasewise system’s task flow, 
which decomposes tasks into three stages. Input + Output Assump-
tions, allows users to upload a dataset a , manage column-based AI 
assumptions b , inspect column-based descriptive statistics c , add 
columns missed by the AI d , and edit assumptions about the task’s 
output e . Execution Plan contains the AI’s editable natural lan-
guage plan for solving the task f , which includes user-selectable 
optional steps g . Code and Output contains AI generated code 
for solving the task and includes an code editor h , intermediary 
variable inspector i , and the code output j . Section 4.1.2 details 
these features. 
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interface (Figure 2, a ). Users can then select one or more datasets 
relevant to the task (Figure 2, b ). The Python server generates 
a summary of each selected dataset with sample values for all 
columns. This summary is passed to the LLM to build its initial set 
of assumptions for the data analysis task. 

Task Specification Input: After selecting relevant datasets, users 
specify their data analysis task in the text field and press submit to 
start the data analysis process (Figure 2, c ). 

4.1.2 Task Decomposition: Phasewise System. Using the summary 
of the dataset and the user-specified task description, the Phase-
wise system decomposes the task into three phases: Input and 
Output Assumptions, Execution Plan, and Code and Output. 

A) Input and Output Assumptions: After loading a dataset (Figure 
3, a ), this component displays all the columns that the AI found 
to be relevant to the task, and for each column it displays several 
editable assumptions regarding the task (Figure 3, b ). Assumptions 
can pertain to data type, uniformity, units, sorting order, etc. Users 
can delete columns they find unrelated to the task, or add columns 
that the AI incorrectly did not select (Figure 3, d ). Within each 
column, users can edit, add, or remove assumptions for that column 
(Figure 3, b ). For each column, users can “inspect” descriptive sta-
tistics (Figure 3, c ), including a frequency table of sample values for 
categorical columns. Additionally, the entire dataset can be viewed 
by clicking on the “open” button a , with the selected columns 
highlighted to help the user leverage the columns to build up as-
sumptions. Finally, the task’s output assumptions can be viewed 
and changed to edit, add, or remove assumptions to steer the final 
output (Figure 3, e ). 

B) Execution Plan: Using the assumptions, including edits, the 
system generates a list of natural language steps for solving the task 
(Figure 3, f ). Steps are editable and the user may add or remove 
steps. The model is also prompted to include optional steps that are 
rendered as selectable steps with a checkbox (Figure 3, g ). After 
the user is satisfied with the plan, they can proceed to generating 
and running the code. 

C) Code and Output: Here the AI generates code to solve the 
task based on the previous two components. The code is immedi-
ately executed and displayed in an editor to allow modification and 
re-execution (Figure 3, h ). Users can inspect the dataframe and 
variables used in the code execution (Figure 3, i ), and see the code 
output (Figure 3, j ) 

4.1.3 Task Decomposition: Stepwise System. Unlike the Phase-
wise system where each component reflects the entire task, the 
Stepwise system decomposes the task into subgoals, which have 
intermediate objectives. Each subgoal (except the first, which loads 
the dataset (Figure 4, a )), is represented as a pair of components: 
Subgoal Assumptions and Actions, and Subgoal Code and Output. 

A) Subgoal Assumptions and Actions: Each subgoal starts with a 
short description of its objective in natural language, followed by 
several assumptions and actions based on the dataset or previous 
steps (Figure 4, b ). We designed LLM prompts so that each subgoal 
would focus on one specific objective such as pre-processing data, 
filtering columns, performing calculations, and displaying plots. 
Users may reorder assumptions and actions to change their priority, 
add or remove assumptions, and edit them directly. Once the user 

is satisfied with them, they can proceed to generate the subgoal 
code and output. 

B) Subgoal Code and Output: Similar to Code and Output in the 
Phasewise system, in this component, the system generates code 
to solve the task based on the previous assumptions and actions 
(Figure 4, c ). The code is immediately executed and can be edited. 
Once executed, the system generates the next subgoal to allow the 
user to either reflect on the current subgoal or start working on 
the next. This process continues until the task is finished and the 
requirements have been satisfied, in which case the next Subgoal 
Assumptions and Actions will indicate completion. However, if the 
user still wants to continue, they can add assumptions and actions 
to continue. 

4.1.4 Editable LLM Assumptions and Actions. We prompted the 
LLM to generate each assumption paired with its correspond-
ing action in the format of <assumption> - <action> . We also 
prompted the LLM to enclose column names, variables, and key-
words in backticks, which could be rendered into editable com-
ponents highlighted with a different color. The aim of these in-
terventions was to reduce information overload and improve the 
efficiency of the editing process. 

4.1.5 Code Execution and Intermediary Variables. The Python 
server runs the AI-generated code and returns any outputs, in-
cluding text, visualization plots, or any errors. Any variables and 
dataframes created during execution are displayed as intermediary 
variables that the user may inspect. 

Inspect Intermediary Variables: users can click on each intermedi-
ary variable to open a full-screen window for inspecting its values. 
For dataframes, the interface includes a string matching filter to 
assist users in finding specific values. 

4.1.6 Managing Edits. Within each component, edits can be either 
pending or submitted. A submitted edit means that the edits have 
been applied to either generate the next component or regenerate 
downstream components, whereas a pending edit has not. Pending 
edits can be reverted using an undo button. However, once an edit 
is submitted, our system introduces a new branch to preserve the 
original, unedited version, while incorporating the edited version in 
the “main” branch. New branches are displayed in a tabbed ribbon 
at the top of the UI as shown in Figure 5. To allow iteration while 
minimizing proliferation of branches, new branches are not created 
when the user edits the last generated component in the stream 
of components. Branching allows users to keep track of previous 
edits and switch between edits as needed. 

4.1.7 Side Conversations. We allocated space to the right of the 
main components for running side conversations with the system 
in three formats: Ask Question, Generate Code, and Run Side Query. 
These features are available in all editable code execution blocks, 
with the exception of Run Side Query, which is also accessible 
alongside the Input and Output Assumptions in the Phasewise AI 
system. 

Ask Question: This allows users to ask questions about the gen-
erated code (See Figure 6). When a code editor is in focus or code is 
selected, the Ask Question button appears to the right of the editor. 
The user can provide a natural language query and the system 
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Figure 4: Overview of the Stepwise system’s task flow, which 
decomposes each task into subgoals containing two components. 
Assumptions and Actions includes the NL subgoal and editable AI 
assumptions b . Code and Output contains a code editor a c , a 
dataframe and variable inspector d , and the code output e . Section 
4.1.3 details these features. 

generates a response on the side. The selection allows users to ask 
targeted questions such as “what does this function do?” 

Generate Code: This feature generates code based on the selected 
code segment and the user’s query. The user can inspect the gener-
ated code and, if it is found useful, insert it into the editor. Similar to 
the Ask Question feature, the selection here enables asking targeted 
questions, such as updating the code to exhibit a different behavior 
based on a natural language prompt. 

Figure 5: The tabbed ribbon displays all the branches created 
after editing various nodes. Users can select a different tab 
to switch to that branch. Each tab indicates where the edit 
occurred and how much it has progressed (number of total 
nodes). 

Figure 6: In the Stepwise and Phasewise systems, users 
can select any code in the editor to ask questions a from 
the AI. This will create a question box to the right of the 
main components in which users can ask their clarification 
question b . The question box will then be replaced with the 
AI’s response c , based on the query and the selected text. 

Run Side Query: This feature enables ancillary data analysis tasks 
using natural language queries. It enables further exploration of 
the dataset or any intermediary dataframes, and helps users vali-
date and refine assumptions. By clicking on the Side Query button 
(Figure 7), users can ask natural language queries about the dataset 
or the current state of the code and variables. The system generates 
and executes code in the side panel, allowing users to view outputs 
such as visualizations, identifying outliers, and check the data’s 
consistency. 

4.2 Conversational Baseline System 
We developed a Conversational system similar to ChatGPT’s 
Advanced Data Analysis plugin as a baseline to compare with the 
Phasewise and Stepwise systems. The Conversational system 
does not include any intervention points or editable assumptions, or 
any of the side conversation features (e.g. Ask Question or Run Side 
Query). It decomposes the task into a bullet point of non-editable, 
natural language assumptions and actions about the task, and then 
immediately generates and runs non-editable code that solves the 
entire task. To interact with this system, as with ChatGPT, the 
user needs to issue follow-up prompts. In this baseline system only 
the prompts (and follow-up prompts) are editable. For verification, 
users could read the code and inspect the intermediate variables, 
and for steering, they could ask follow-up questions in natural 
language. 

4.3 System Implementation 
All three variants are built as a web application and Python server 
stack. The web application is written in TypeScript and the React 
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Figure 7: The run Side Query button a is placed to the right 
of each code execution block in the Stepwise and Phase-
wise systems, and the input and output assumptions in the 
Phasewise system. This will open the question box b in 
which the user can specify a natural language data explo-
ration query on any of the intermediary variables or the 
original dataset. The question box will then be replaced with 
the AI’s response which includes the code and any outputs, 
including visualizations c . 

web framework to include the interface elements described in Sec-
tion 4.1. The web application interacted with the Python server for 
uploading datasets, obtaining their descriptive summaries, running 
code, and retrieving their execution results. It also called the GPT-4 
Turbo models from OpenAI. Each component in the Phasewise 
or Stepwise system is represented as a node in a tree data struc-
ture inside the application. This enables tracing the path from each 
node to the root node to prepare the context prompt for interacting 
with the LLM and generating the next component. It also provides 
state management for the edits that create branches and is used to 
render the tabbed ribbon interface. The Monaco Editor is used as 
the code editor in each of the code execution blocks and for syntax 
highlighting the non-editable code pieces. To enable code execu-
tion on the Python server, and to retrieve code execution outputs 
and intermediary variables, we used the IPython kernel. We used 
the %matplotlib inline command which returned all plots as 
base64 images that could be included as a response inside the REST 
APIs. 

4.3.1 LLM Prompt Structures. We required complete control over 
the format of the LLM’s output to allow reliable parsing and ren-
dering of structured components. However, few-shot learning (e.g. 
providing specific input and output examples) would make the 
LLM overfit to the provided few-shot examples. Through informal 
experimentation with different prompts and models, we concluded 
that the GPT-4 and GPT-4 Turbo models are capable of following 
templates that only specify the format of the output with mini-
mal specification of the content to be generated, with sufficient 

[input-assumptions]:


  [dataset]: <dataset name>


  [relevant-columns]:


    [column]: <column name>


    [assumptions]:


      - <4-7 word column assumption> - <4-7 word required action>


      - <4-7 word column assumption> - <4-7 word required action>


      - ...


    [column]: <column name>


    [assumptions]:


      - <4-7 word column assumption> - <4-7 word required action>


      - <4-7 word column assumption> - <4-7 word required action>


      - ... 

Figure 8: The prompt template that selects dataset columns 
relevant to the task and generates assumptions and actions 
for those columns in the Phasewise AI system. 

reliability for a practical evaluation. Figure 8 shows an example 
of the prompt used to select the columns relevant to the task and 
generate assumptions and actions about each column. Although 
the exact format and structure is explicitly provided, the values are 
not, which enables the system to work generally on a variety of 
input tasks and datasets. 

5 User Evaluation 
To evaluate and compare the Stepwise and Phasewise systems in 
enabling users to steer the AI and verify its responses, we conducted 
a within-subjects study. The study compared these systems with 
the Conversational baseline and involved 18 participants who 
used all three systems to complete six data analysis tasks, with two 
tasks per system. Datasets and tasks were designed to be sufficiently 
complex that the AI would not automatically produce correct so-
lutions without user involvement. They required participants to 
carefully verify the AI’s process and responses and steer the AI in 
addressing any issues. 

The main focus of our exploratory study is on understanding the 
unique ways in which each system aids in steering and verification 
during the AI-assisted data analysis process. We also investigated 
the perceived utility of other various system components, and ex-
plored the usage patterns and user preferences that emerged with 
each system. 

5.1 Participants 
We recruited 18 participants (10 men, 8 women, 0 non-binary) from 
a large research university. Participants were pre-screened to ensure 
they were proficient in writing Python code, familiar with Python 
data science libraries, and experienced in regularly performing data 
analysis tasks. In terms of data analysis experience, five participants 
reported having 1–2 years, seven having 3–5, and six more than five 
years. The majority (14 participants) used Python daily, while the 
rest used it at least weekly. All reported familiarity with data science 
libraries like numpy, matplotlib, with 15 also familiar with pandas. 
Jupyter Notebooks were used daily by eight participants, weekly 
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by six, monthly by two, and rarely by two. For English proficiency 
in technical contexts, 16 participants felt very comfortable, while 
two felt somewhat comfortable. In LLM usage for coding, seven 
reported using daily, seven weekly, and four using monthly or less. 

5.2 Data Analysis Tasks 
We designed six tasks derived from the ARCADE benchmark [102], 
which contains a diverse set of tasks from various datasets on Kag-
gle [39]. These tasks included a series of natural language (NL) 
queries written by professional data scientists with the intention 
of interacting with an AI assistant. We selected tasks to not re-
quire specific domain knowledge, targeting for participants to solve 
them within a 15-minute time frame. However, we also wanted 
to make sure that the tasks included additional complexities that 
would make it difficult for the AI to correctly solve them without 
proper user verification and intervention. Therefore, we selected 
and altered tasks and their corresponding datasets with some for-
mat inconsistencies and altered distributions. For instance, Task 2 
(Table 2) requires splitting tags and themes with commas before 
grouping tags by themes. To increase complexity, we modified the 
tags and themes columns to have only the first theme or tag in 
capital case, with the rest in lowercase. See Table 2 for details of the 
six study tasks. We ran each of the six tasks (query + dataset) 10 
times on all three systems, ensuring a consistent 100% failure rate. 

5.3 Study Procedure 
The order of the three Phasewise, Stepwise, and Conversational 
(baseline) systems was fully counterbalanced using a Latin square 
design across the 18 participants and tasks to minimize order effects, 
while tasks were fixed from T1 to T6. Participants spent approxi-
mately 50 minutes with each system. They received a 10-minute 
tutorial and a 5-minute warm-up task to familiarize themselves 
with the system. Then proceeded to the main study tasks, where 
they were given a dataset and a NL query. The lead author who con-
ducted all experiments, explained the dataset and relevant columns 
for each task. Participants proceeded to execute the task and were 
asked to think aloud throughout the study [24]. 

Participants were made aware that identifying and correcting 
mistakes made by the AI was their responsibility. They were in-
structed to notify the experimenter once they believed they have 
achieved a correct result using the AI tool. The experimenter would 
then verify their solution against expected outcomes and provide 
up to two hints if necessary. These hints addressed AI mistakes cor-
relating with each of the two issues for each task, as listed in Table 
2, ensuring consistency across participants. Completion criteria for 
each task required resolving both issues listed in the table. 

Following the completion of each task, participants were asked 
about their choice of method for steering the AI (e.g., editing the 
execution plan versus directly editing the code) and their verifica-
tion processes. After completing two tasks under each condition, 
participants completed a questionnaire including Likert items about 
their ability to verify, intervene and steer the AI, sense of control, 
information overload, frustration levels, and the utility of specific 
features (exact questions included in Figure 9). Additionally, partic-
ipants discussed their experience with each system in a 5-minute 
semi-structured interview. 

The sessions were conducted in-person, lasting approximately 
2.5 hours with a short break after using each system. Consent was 
obtained before running the study and each participant was com-
pensated with a GBP £50 Amazon gift card. Our study protocol was 
reviewed and approved by our institution’s ethics and compliance 
review board. 

5.4 Data Collection and Analysis 
We recorded the audio and screen activity during each session using 
MS Teams. Audio recordings were transcribed for analysis. User 
interactions and feature usage was also logged. 

The think-aloud data was our main source of understanding how 
participants used the different systems and what they thought about 
them in comparison with each other. We transcribed the think-aloud 
data and post-condition interviews, and two researchers performed 
a negotiated, directed qualitative analysis. Ahead of the analysis, 
we identified a set of research themes concerning steering and 
verification during the AI-assisted data analysis process, and report 
our findings organised by these themes in Section 6. Because we 
were interested in specific themes a priori, and were not developing 
a reusable coding scheme, our analysis differs from the commonly 
applied inductive approach [7]. We did not develop a codebook, 
and this is not a situation in which it is appropriate to seek inter-
rater reliability. Instead, we used a “deductive” coding approach 
focusing on steering and verification as the main themes. The two 
researchers iteratively discussed their interpretation of the findings 
and negotiated each disagreement until it was resolved [64]. 

Task completion was defined as achieving a solution that cor-
rectly resolved both issues indicated in Table 2 for each task within 
the 15-minute time frame. For tasks that were correctly completed, 
we recorded the number of hints provided during each task and 
calculated approximate time on task. Task completion time was an 
approximate of when participants started the task (clicking on the 
run query button) until they notified the experimenter that they 
finished the task, with no remaining issues. However, our analysis 
of task time is only indicative, as think-aloud protocols interfere 
with accurate timing. 

We analyzed post-condition Likert responses to compare the 
three systems and determine any statistically significant differences 
using a Friedman Chi Square test on the responses for each question 
with the system type as the independent variable. When signifi-
cant differences were found (𝛼 = 0.05), a Wilcoxon signed-rank 
test identified pairwise significant comparisons. Since we made 
three comparisons (between each pair of systems), we applied a 
Bonferroni correction (𝛼 = 0.016). 

6 Results 
In this section, we present a comparative analysis of the Stepwise 
and Phasewise AI tools versus the Conversational baseline. Our 
findings are derived from study observations, log data, participant 
(P1–P18) think-aloud data, post-condition surveys, and post-study 
interviews. In turn, we present the results regarding task completion 
(Section 6.1), steering and control (Section 6.2), and verification 
(Section 6.3). 
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Table 2: Final tasks used in the evaluation, including the exact queries for each task, the datasets involved, and issues the AI 
would encounter without user intervention. 

Natural Language Query Dataset Issues 
Task 1: Show me the top five highly rated 
products by Nivea 

big-basket-products.csv Not recognizing multiple sub-brands of "Nivea" 

(1) and not cleaning the Rating column to 
accurately extract numeric values (2). 

Task 2: What is the most common tag 
associated with each theme? 

anime-list.csv Not correctly splitting Themes by comma (1) and 
overlooking the inconsistency in casing between 
Tags and Themes (2). 

Task 3: Display the top 20 most popular 
drama names that have only one unique 
genre? Popularity is based on drama 
rating and votes. 

korean-drama.csv Not filtering genres labeled as "Unknown" (1) 
and extreme outliers in votes (2) 

Task 4: What are the top ten positions 
(based on mean salary) for working 
remotely in US-based companies? 

data-science-job-salaries.csv Not cleaning Country Code (1) and not 
identifying remote companies using 
Remote Ratio (2). 

Task 5: Show the top five movies with the 
highest percentage return on investment. 

bollywood-movies.csv Failed to (1) clean budget correctly, and (2) 
calculate missing Revenue values based on 

India and Worldwide . 

Task 6: What were the top three lowest 
scoring matches? Sort in ascending order 
and show location, local and visitor team 
names. 

euroleague-basketball.csv Failed to select related columns for calculating 
scores (1), and not knowing how to aggregate 
scores by Game and Round (2). 

6.1 Task Completion 
Successful task completion was determined as solving the task with 
no remaining issues within 15 minutes. Of the 108 task episodes 
(18 participants × 6 tasks), only 7 were not completed success-
fully. P13 had three non-completed tasks, and P3, P8, P11, and P14 
each recorded one non-completed task. The distribution of non-
completed tasks per condition was as follows: Baseline: 1, Phase-
wise: 2, and Stepwise: 4. The incidence of task non-completion is 
too low to permit statistical comparison. 

In 31 instances of the 108 task episodes, participants indicated 
task completion despite remaining issues, indicating insufficient 
verification. In such situations, the protocol was for the researcher 
to identify the remaining issue(s), requiring participants to steer 
the tool towards fixing the problem. A Friedman Chi Square test 
revealed no statistically significant differences in number of veri-
fication hints required across conditions (𝐹 (2, 34) = 1.0, 𝑝 = .606), 
with 13 hints required for Baseline, 10 for Phasewise, and 8 for 
Stepwise. 

Furthermore, a one-way ANOVA showed no significant differ-
ences in task completion time between conditions. The mean com-
pletion times across conditions indicated that tasks solved with the 

Baseline tool were finished slightly faster (M=543s, SD=220s), fol-
lowed by the Stepwise tool (M=588s, SD=329s), whereas tasks fin-
ished with the Phasewise tool were solved slightly slower (M=658s, 
SD=240s). 

Finally, post-condition questionnaires on ease of solving EDA 
tasks (Figure 9, Q1) or participants’ sense of success (Figure 9, Q6) 
did not show any statistically significant differences across the three 
AI tools. 

6.2 Steering and Control 
Analysis of the post-condition questionnaires about control found 
that participants felt significantly more in control of the AI’s anal-
ysis process when using the Stepwise and Phasewise systems 
compared to the Baseline (Stepwise-vs-Baseline: 𝑝 = .001, 𝑑 = .42; 
Phasewise-vs-Baseline: 𝑝 = .004, 𝑑 = .42). Participants also re-
ported that the Phasewise and Stepwise systems were signifi-
cantly easier to intervene and fix (Figure 9, Q3) whenever it was 
doing something wrong (Phasewise-vs-Baseline: 𝑝 = .012, 𝑑 = .55; 
Stepwise-vs-Baseline: 𝑝 = .011, 𝑑 = 1.05). However, no significant 
differences were found in the perceived ease of steering between 
the three systems (Figure 9, Q4). 

In the remainder of this section, we explore themes identified 
within participants’ workflows and their think-aloud data. This 
analysis reveals varied preferences among participants and offers 
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Q8. To what extent did you feel overwhelmed 
by the amount of information displayed in 
the UI and options that you had? 

Q1. How easy was the AI tool for solving data 
analysis tasks? 

Q2. How easy was it to verify and validate the 
AI's responses? 

Q3. How easy was it to intervene and fix the AI 
whenever it was doing something wrong? 

Q4. How easy was it to steer the AI towards 
your desired solution? 

Q5. To what extent did you feel in control of 
the AI's analysis process? 

Q6. How successful do you feel you were in 
achieving accurate and satisfactory results 
using the AI? 

Q7. When working on the tasks, how 
frustrated did you feel? 
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B: Baseline 

p<0.016 

Asterisks indicating statistically significant difference with Baseline: 

P: Phasewise S: Stepwise 

(*) p<0.005(**) 

Figure 9: Summary of responses to the post-condition Likert 
questions for each system. 

insights into factors that either facilitated or hindered their ability 
to steer the process. 

6.2.1 Steering by Directly Editing AI’s Assumptions and Actions. 
Participants appreciated the ability to directly edit the AI-generated 
assumptions, thereby aligning the system’s operations with their 
expectations. As P16 stated: “I could add any assumptions that I had 
in mind and make it the AI’s assumptions.” This enabled users to 
“steer the AI’s decision making process to different directions.” (P3). 
For P11, the ability to edit assumptions fostered a more critical per-
spective towards them; conversely, in the baseline system where 
the assumptions were fixed, they tended to accept them without 
questioning, as P11 would “just go with it as opposed to being criti-
cal.” Furthermore, the baseline’s fixed assumptions were a source of 
frustration, a sense of lack of control, and a barrier to effective inter-
action (P2, P9, P15, P16, P17). P16 expressed a preference for editing 
the assumptions directly “instead of just trying to ask a [follow-
up] question,” and P9 noted that the ability to edit assumptions 
eliminated the need for manually “engineering your prompts”. 

The structured editing of assumptions, actions, and execution 
plan enabled direct manipulation, explicit and fine-grained control 
over the AI’s behavior. P5 expressed that it was easier to interact 
with, since the assumptions were given and they just had to modify 
which made the interaction “less talking and more clicking on but-
tons”. Participants appreciated being able to “edit something very 
specific” (P8), such as a step in the execution plan, or “including the 
pre-processing steps right beside the columns” (P7). Similarly, P12 
found it difficult to make targeted edits in the absence of structure, 
stating that “making small edits [in the Baseline] requires a lot of 
tweaking.” Additionally, P6 reported that increased structure fa-
cilitated locating information and served as a memory aid. This 
contrasts with the difficulties they experienced using the Stepwise 
system which lacked the amount of structure used in the Phase-
wise system. With the Stepwise system, participants had to “find 
the correct step to make an edit” or“find which column the assump-
tion refers to” (P6). P4 further indicated that the overall structure 
provided in the Phasewise system “pushes me towards structured 
analysis”, specifically “in terms of validating assumptions”. 

While most participants were generally positive about direct and 
fine-grained editing of assumptions, P2 and P4 preferred the AI to 
update its assumptions via natural language queries. P4 additionally 
criticized the Phasewise system for the inability to see results 
update instantly after editing input/output assumptions. 

6.2.2 Higher Perceived Control Through Step-by-Step Task Decom-

position. A distinct advantage observed with the Stepwise system 
was the enhanced control participants reported over the data anal-
ysis process. This perception was mainly attributed to tackling the 
task in smaller, manageable segments. For instance, P16 reported an 
increased sense of control, by being able to “easily edit the assump-
tions and actions in each step.” Similarly, P11 felt “much happier” 
and “more confident”, attributing it to the ability to “manipulate 
steps naturally.” P10 also shared a sense of more control over the 
AI, stating that they “were not scared” to make edits to what the AI 
was doing, as “it was just a couple of lines,” and “it was more inviting 
to edit the assumptions.” P17 mentioned that the Stepwise system 
facilitated an iterative process “where [they] could easily go back 
and change something”. While these reports indicate a perception 
of enhanced control, actual control should be measured in future 
work. 

6.2.3 Steering by Manually Editing Code. Most participants appre-
ciated the ability to manually edit AI-generated code. P18 men-
tioned editing the AI-generated code was like “you’re taking over 
from the AI.” These edits ranged from minor modifications, such 
as manually changing a threshold or printing values, to more in-
volved changes such as using the Generate code feature to up-
date the logic behind a line of code. When using the Generate 
code feature, participants (P1, P3, P4, P7, P8, P9 P11, P12, P17, 
P18) selected a line of code and prompted the AI to update it 
based on a provided natural language query. For instance, P9 
selected df[df['company_location'] == 'US'] in their code 
and prompted the AI with “can you change this line to look 
for containing ‘US’ instead of strict equality?” P12 ex-
perienced increased control when using the Generate code feature 
since they “could make very granular prompts”. 
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Participants preferred manually editing code for minor changes 
over using the AI-steering methods provided in each system. Many 
participants expressed frustration with the inability to directly edit 
code in the baseline system. P7 stated, “if [the code] was editable, 
I can just correct things which I know myself instead of prompting 
again.” Notably, P10, unable to edit the AI-generated code directly 
with the baseline, resorted to copying the desired code line, editing 
it in the follow-up prompt, and then asking the AI to incorporate 
the edited code. They found crafting a prompt for the specific 
edit challenging, admitting, “I don’t really know how to prompt 
it to get it do what I want.” However, in some cases, P3 and P10 
indicated reasons for not wanting to edit the AI-generated code 
and instead preferred using the AI-steering methods to make the 
edits. P3 wanted “to make sure that [their edit] is consistent with the 
rest of the code” and P10 stated, “I don’t like editing the code directly 
when I haven’t written it.” 

6.2.4 Preference for Conversational Steering. In some instances, 
participants (P4, P5, P6, P8, and P11) specifically indicated a prefer-
ence for steering the AI through natural language prompts. They 
favored the Conversational method of steering the AI over edit-
ing the structured assumptions, actions, or execution plans. For 
example, P4 expressed difficulty in understanding how changes 
to the assumptions in the Phasewise system, affected the LLM’s 
output. In contrast, P4 had a more accurate mental model of how to 
interact with the Conversational baseline, stating “I know exactly 
how writing a prompt is going to affect it.” Others felt constrained 
by the need to adhere to a specific structure, expressing a prefer-
ence for more free-form interactions. For instance, P8 described the 
Conversational system as easier and faster for “directing the AI 
using natural language”, compared to the Stepwise system where 
they felt they were “trying to change the syntax of the AI.” Similarly, 
P5 wanted to “intentionally write vague prompts and see how much 
[the AI] understands.” P4 believed that the Conversational system 
required less cognitive effort, stating “I don’t like spending that effort 
to think about it.” P11 mentioned feeling “less critical” about them-
selves when using the Conversational tool, allowing the AI to 
“go and figure it out” on their behalf. P11 elaborated: “I knew what 
it was [that] I wanted it to consider, but when [the tool] is expecting 
a structured input then I was more concerned with providing it in a 
nice and structured manner.” 

6.2.5 Avoiding Edits that Lead to Inconsistency or Regeneration. To 
discover participant reasoning behind the selection of a particular 
steering method from the available options, participants were asked 
about their specific interactions after each task. We found that 
participants avoided certain edits when using the Stepwise and 
Phasewise systems in two cases: 

• if they had previously edited downstream components and 
then decided to update an upstream component, the system 
ignored all downstream edits since regenerations proceed 
from top to bottom. 

• if they decided to make edits to downstream components 
that conflicted with assumptions or code in upstream com-
ponents. 

For example, P1 was worried whether the AI would “regenerate 
everything else correctly” after updating a specific assumption. P12 

mentioned that there was “no obvious way of going back without 
redoing all of the earlier changes”. Similarly, P4 mentioned that 
they “want to make sure that [their] changes propagate and stay.” P8 
unexpectedly found that they lost downstream edits after making 
an edit on the upstream components, expressing: “Oh! So when it 
regenerated this, it forgot about [their previous edit].” Participants 
expressed the need for bidirectional updates to maintain consistency 
across different components after making an edit. For example, 
when P18 was using the Stepwise system, they could not make 
edits at the beginning of the problem, which felt natural to them, 
because “everything underneath it will drop.” They preferred that 
the system would just highlight parts that would be invalidated in 
the downstream instead of regenerating everything. P10 expressed 
concern about requiring to “read everything every time [they] made a 
small change.” In contrast, P18 accepted previous components going 
out of sync, as at that point they have “taken over from the AI” and 
P5 appreciated the propagation of changes between components, 
stating that they liked “how interconnected things were”. 

6.3 Verification 
In all systems, participants relied on reading and analyzing the 
AI-generated code and inspecting the intermediary variables for 
verification. The Stepwise system’s approach of breaking down 
tasks into smaller steps, along with the side conversation feature 
available in both Stepwise and Phasewise systems, improved par-
ticipants’ confidence in verification. The post-condition question-
naire items indicated that both Stepwise and Phasewise systems 
significantly facilitated easier verification (Figure 9, Q2) of the gen-
erated solution compared to the baseline (Phasewise-vs-Baseline: 
𝑝 = .016, 𝑑 = .47; Stepwise-vs-Baseline: 𝑝 = .016, 𝑑 = 1.44). 

6.3.1 Verification through Reading Code and Asking Questions. 
Reading the code line-by-line was a common verification method. 
P12 mentioned that “you still have to read all the code and under-
stand what it’s doing” for verification. Participants mostly relied 
on their own knowledge about Python and Pandas for verification, 
as stated by P8: “you have to know how to code, because you have 
to read the code and make sure it makes sense.” When P3 was asked 
how they knew that they had successfully finished the task, they 
responded “I inspected the code and found that it handled that edge 
case correctly.” However, in many instances participants had dif-
ficulty understanding the AI-generated code, if it used idioms or 
functions unfamiliar to the participant. Participants appreciated the 
Ask Question feature in these situations. A majority of participants 
(n=13) used this feature at least once to explain a portion of the 
generated code. For example, when P9 was working on Task 2, they 
stated: “I’ve never seen this function explode() so I’m just gonna 
ask what does this do”’. Participants found the responses to their 
queries useful. For example, P2 asked about the fillna() func-
tion and realized that the code was doing something undesirable 
(replacing nan with "Unknown" ). Furthermore, participants felt 
the absence of the Ask Question feature when using the baseline 
tool, where for instance P18 wanted to use a search engine, and 
P6 mixed the main thread of the task with a comprehension ques-
tion: “I don’t understand [refers to code].” During the study, several 
unanticipated, yet effective use cases of the Ask Question feature 
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emerged, such as P4 asking questions about an assumption, and 
P12 requesting help with debugging by selecting part of the code 
and asking “why this code produces an error.” 

6.3.2 Inspecting Intermediary Variables. All participants used the 
intermediary variable inspection feature available in all three sys-
tems for verification. Participants inspected variables to “compare 
between turns” (P1), and to “see if [the system] has done the [opera-
tion] correctly” (P14). P12 mentioned that the verification process 
was similar to “debugging” and P11 indicated that inspecting all the 
dataframes significantly increases confidence in the process. 

6.3.3 Steering for Verification. However, generated code was not 
always easily verifiable. In some instances, the generated code 
overwrote variables instead of creating new dataframes, which 
interfered with variable inspection as only the final state of the 
variable after code execution was displayed. In other cases, the 
generated code directly computed the final result, without suffi-
cient decomposition of steps necessary for proper verification. For 
example, P4 mentioned that “the way that [the system] is generating 
code does not create useful intermediary dataframes ... it’s showing 
me the end result”. In some cases this lead to unjustified reliance on 
the generated code, as P3 mentioned: “I guess I would need to trust 
in this case.” 

Therefore, a recurring theme that emerged was participants 
trying to update the code, through steering, to include more in-
formative and useful intermediary variables. For example, P16 
added a new step to the execution plan to emit new outputs 
and other relevant columns in addition to just showing the 
final result. P4 added an explicit step to the execution plan 
display couple of groups so I can manually verify . In-
terestingly, there were also several cases that participants just did 
not understand the method used in the generated code, and there-
fore, asked the system to “come up with a more understandable 
solution” (P6). 

6.3.4 Focusing on Smaller Steps Facilitated Verification. The Step-
wise system provided a one-to-one mapping of code with the inter-
mediary variables for each step. Participants found that they can 
easily “focus on each small step” (P15), improved their confidence 
since they were forced to “think of edge cases along the way” (P9). 
P5 mentioned that “having it step-by-step leads to more reflecting 
from my side and verifying each block”. Granular decomposition 
also helped with locating issues. It was “easier to figure out what is 
going wrong” (P11), and “there was less margin of error” (P7). For P3, 
the higher number of intervention points in the Stepwise system 
helped their “results to be correct all the time.” 

The step-by-step process was “more natural” (P11) and “felt a lot 
more similar to how [they] would approach the analysis” (P9), because 
“don’t usually solve the whole task at once.” (P10). Interestingly, P7 
“felt less need for validation since [they are] inspecting after each step”. 

Additionally, participants experienced less information overload: 
“you get the blocks one-by-one so you are not overwhelmed by too 
much information” (P5), and compared to the Phasewise system 
which felt more like “debugging somebody else’s code than writing 
my own code” (P10). However, several participants (P4, P5, P13, and 
P18) were critical of the Stepwise system for not providing any 
information about the upcoming next step. P18 stated that “I do not 

want it to do everything at once, but I want to know what it’s gonna 
do next” and P5 expressed reduced confidence for “not knowing the 
steps in advance.” 

6.3.5 Aggregated Information Helped with Verification. Many par-
ticipants (n=7) appreciated how the Phasewise system aggregated 
descriptive statistics and assumptions for each column, finding that 
these elements scaffolded the AI’s reasoning about the task. These 
helped P15 “understand what are the different possibilities,” enabled 
P6 to “see exactly how each column will be treated”, and “forced” 
P3 “to see the data a bit better.” For example, in Task 3, P3 easily 
found the "Unknown" genre problem in the descriptive statistics, 
immediately updating the corresponding assumptions to handle it. 
Furthermore, P9 justified the usefulness of the aggregated informa-
tion per columns by stating “it is something a lot of times you would 
end up asking about anyways,” and P1 appreciated that it “gives you 
a preview of everything together.” 

However, some participants mentioned that the aggregated statis-
tics were a source of information overload. The post-condition ques-
tionnaires also indicated that they felt significantly overwhelmed 
(Figure 9, Q8) by the amount of information displayed when using 
the Phasewise system compared to the baseline (𝑝 = .008, 𝑑 = .11). 
P16 felt “frustrated by the amount of things that [they] saw on the 
screen” and P8 stated that “It could start getting quite cumbersome if 
the dataset was large”. Similarly, P4 found the structure to be over-
whelming and some assumptions about columns were irrelevant to 
what they were trying to do, and instead, they wanted the system 
to contextually display the right amount of information. 

6.3.6 Running Side Queries. The Run Side Query feature of the 
Stepwise and Phasewise systems was the most frequently used 
side conversation feature with 82 usages, compared to 26 usages 
of Ask Question, and 17 usages of Generate Code. All participants 
ran side queries at least once. About 75% (n=62) of the side queries 
were to understand data and its limitations and 17% (n=14) were to 
visualize data for inspection. 

The Side Query feature facilitated a novel and effective work-
flow, especially when integrated with the editable assumptions, 
actions, and execution plan in both systems. Participants used it 
to “explore the dataset, validate assumptions, and add them to the 
column breakdown” (P17), and “to build up assumptions and edit 
the plan” (P10). P9 used the Side Query to plot the distribution of 
a column and select a better threshold for filtering outliers. P13 
mentioned gaining “more confidence after plotting histograms” and 
found that the Side Query proved more beneficial in the Stepwise 
system because it “forces me to check the outputs at every step” in 
contrast to the Phasewise system. In the baseline system, without 
the Side Query feature, P4 and P10 resorted to the main thread for 
their verification queries. This experience led them to appreciate 
the convenience of having the Side Query feature in a side panel, 
which prevented interference with the main thread. Reflecting on 
this, P10 highlighted that “it was not taking away from the history 
of questions I’d established already” and expressed a desire to avoid 
getting “off track with intervening stuff” in the baseline system. 

6.3.7 Deferring Steering after Seeing Initial Results. Participants 
frequently preferred to first see results before interacting with and 
steering the AI tool. P6 highlighted that they “just want to see the 
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result first and then trim it”. P18 wanted to “look at the result first 
and if the result was nonsense then go back”. This was particularly 
the case in the Phasewise and Stepwise systems, as P4 mentioned 
that the system made them “go through all of these steps and spend 
so much time before [they] could actually see the result.” P8 wished 
to see the generated code because they did not trust the system 
to generate correct code even if the execution plan was correct: 
“part of me wants to just see what it does, even if the [execution] plan 
looks reasonable, I know there’s gonna probably be errors.” Another 
reason why participants wanted to defer steering, particularly in 
the Phasewise system, was that the input/output assumptions or 
the execution plan did not have enough details about how the AI 
is going to “handle” or “calculate” something (P10, P14). Similarly, 
P12 was not sure about something in the plan, so they said “I’m 
going to generate first and see what happens.” Lastly, P4 indicated 
that having a small working memory was why they preferred the 
baseline system, where every interaction with the AI resulted in a 
complete output to verify. 

6.4 Summary of Results 
Our study revealed that while there was no difference in task suc-
cess, completion time, or number of required verification hints, 
participants felt significantly more in control of the data analysis 
process when using the Phasewise and Stepwise systems com-
pared to the Conversational baseline. Overall, the results show 
that both systems were preferred over the Conversational base-
line. However, because the Phasewise system led to significantly 
higher information overload, the Stepwise system emerged as the 
most balanced and effective of the three. 

The study also highlighted the value of side conversations in the 
AI-assisted data analysis process. The ability to run side queries 
facilitated an iterative workflow of exploration, validation, and 
updating of editable assumptions, particularly in the Stepwise 
system. The Ask Question feature helped participants understand 
the AI-generated code, while the Generate Code feature allowed 
them to update the logic behind a line of code. In the absence of 
side conversations, as in the baseline system, participants mixed 
their queries with the main thread of the task. 

In the Phasewise system, the organization of assumptions en-
abled direct and broad control and served as a memory aid. Par-
ticipants appreciated the aggregated descriptive statistics and as-
sumptions for each column, which helped them understand how 
each column would be treated. However, the amount of information 
displayed was also a source of overload for some participants. 

The Stepwise system provided fine-grained control by breaking 
down tasks into smaller, manageable segments. This improved 
verification, as participants could focus on each small step and 
consider edge cases along the way. However, a limitation of the 
tool was the inability to see the next step in the process. 

Finally, some participants preferred the Conversational system 
for its simpler and more familiar mental model of how asking follow-
up questions would affect the AI’s output. They also appreciated 
the flexibility of free-form interactions and the ability to see a result 
faster. However, the inability to directly edit the AI-generated code 
was a source of frustration. 

7 Discussion and Implications for AI-Assisted 
Data Analysis Tools 

Our designs for the Phasewise and Stepwise systems, and their 
evaluation against the Conversational tool, have provided us 
with a deeper understanding of the trade-offs within the design 
space of AI-assisted data analysis tools. This discussion will explore 
these trade-offs, their impact on user preferences and interactions, 
and suggest guidelines for design. 

Our study finds that the key to designing AI-assisted data analy-
sis tools lies in providing the user with the necessary controls to 
make informed decisions and maintain control over the process. 
This echoes the longstanding positioning of the role of user inter-
face elements in interactive machine learning systems as providing 
decision support [53, 78, 82]. Our study finds that in the specific 
case of AI-assisted data analysis, decision support is subject to the 
following key design questions: 

• DQ1 Steering Points: At what points should the system 
allow the user to intervene in the process and steer? How 
frequently should these steering opportunities occur? 

• DQ2 Steering Support: How does the user verify the cur-
rent state of the AI’s output and determine which direction 
they should steer it? How should the tool facilitate users in 
making informed decisions at each steering point? 

• DQ3 Steering Modality: What interface affordances are 
available for the user to steer the process? How structured 
or flexible should the modality of their interaction be? 

These are similar to the design questions regarding the num-
ber and nature of “choice points” within a data analysis workflow 
generated by an earlier generation of tools termed Intelligent Dis-
covery Assistants (IDAs) [83]. We find that the choices users face 
with IDAs (e.g., what type of regression or normalisation to apply 
at a particular step) still exist within generative AI-assisted data 
analysis, but they are embedded within the higher-level challenges 
of steering, and are experienced by users as a secondary concern. 

7.1 DQ1: Steering Points 
One design question is at which points during the generation pro-
cess the user should reflect, check for correctness, and steer if 
needed. Our Stepwise and Conversational tools can be seen as 
two ends of a spectrum of intervention opportunities. The Stepwise 
system offers steering points after each step of the analysis, allow-
ing for incremental adjustments. In contrast, the Conversational 
tool aims to complete the task with minimal user interruption, 
offering a chance to adjust only after attempting to solve the task. 

Our results comparing user experiences with these systems re-
veals significant trade-offs. More frequent steering points increase 
users’ confidence in the results and their sense of control over the 
AI’s process. However, it demands more cognitive effort and delays 
the final outcome due to the frequent pauses created by the inter-
vention points. Additionally, it may lead to premature decisions 
as users commit to directions without understanding their future 
impact. According to the Cognitive Dimensions of Notations frame-
work [26], this is a clear case of the system imposing “premature 
commitment”. Indeed, our findings indicate varied user preferences 
between the Conversational and Stepwise systems due to these 
factors. 
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To address this challenge and balance control with cognitive load, 
AI-assisted data analysis tools could adopt a strategy that initially 
attempts to solve the task without user intervention, followed by 
a more interactive steering and verification phase with a rich set 
of steering points. This is similar to the highly validated design 
strategy of information visualization tools to provide an “overview 
first”, and only later “details on demand” [85]. 

7.2 DQ2: Steering Support 
At each steering point, users must verify whether the output is 
correct, and if not, choose a steering action. How should the tool 
facilitate the information seeking and exploration process that 
is required for the user to make informed decisions? Tools for 
verifying AI-generated content are termed “co-audit” [25]. Auditing 
and verification are part of the analyst process of sensemaking [73] 
and information foraging [72]. Critically, such processes are an 
opportunistic mix of top-down hypothesis formation and bottom-
up hypothesis testing [21], with multiple activities proceeding in a 
parallel, non-linear fashion. This is antagonised by the sequential 

8 Limitations nature of chat interfaces. 
Our exploration into the design space introduced side conver-

sations and the Run Side Query function to aid this process. Fur-
thermore, in the Phasewise system, the system displayed dataset 
columns relevant to the user’s task, along with interactive descrip-
tive statistics. Moreover, the execution plan component suggested 
optional steps for the user to consider adding before proceeding to 
the next step, enhancing the decision-making process. 

Our findings indicate that when the system provides timely, accu-
rate, and relevant information, it fosters a genuinely collaborative 
experience. Conversely, displaying irrelevant information can re-
duce trust in the AI and potentially leading to information overload. 
Users also risk becoming overly dependent on AI for guidance, 
potentially neglecting critical information seeking which may lead 
to poor decision making. 

Participants noted their desire for the AI to act as an agent, aiding 
in the assumption-building process at steering points. Future tools 
could automatically retrieve assumptions by pinpointing specific, 
relevant evidence to support informed decision-making without 
overwhelming users. Additionally, these tools could help in access-
ing domain-specific knowledge pertinent to the data analysis task. 
Lastly, tools should be transparent regarding the AI’s limitations in 
sourcing all necessary information for optimal decision-making at 
each decision point. 

7.3 DQ3: Steering Modality 
After the user has decided which direction to steer the AI, their next 
action is to specify their intent to the AI. The design question here 
is determining the right interface and modality for the user to steer 
the AI. In response, we introduced two distinct interfaces: a free-
form text editor used in the Conversational system for maximal 
flexibility, and structured editors in the Stepwise and Phasewise 
systems. The structured editors contain the assumptions and actions 
generated by the LLM’s chain-of-thought, allowing users to edit 
them for steering. 

Our results highlight the trade-offs between these approaches. 
An unstructured and flexible modality reduces perceived cognitive 

load, and allows users to be less self-critical when making edits. 
Users can form a more straightforward mental model of how their 
inputs steer the AI and receive immediate feedback. However, in-
creased flexibility shifts the responsibility of precise and effective 
interaction onto the user. Users lose fine-grained control and may 
have to engage in the challenging and time-consuming task of 
prompt design [60, 103]. 

Depending on the generative AI and data analysis expertise of 
the user, a range of steering methods may be appropriate. A poten-
tial approach could be adding the ability to switch between struc-
tured editing of assumptions or instructing the AI with free-form 
queries. Moreover, to increase transparency in the user’s mental 
model about how their edits affect the system, tools could enable 
inspection of the underlying LLM prompts, and highlight how their 
steering edits affect the information sent to the model. Lastly, ad-
vanced users might appreciate the ability to manually adjust the 
underlying prompts. These design suggestions are complementary 
to established prompting guidelines and practices (e.g., [66]). 

We identified several limitations in our study and system design 
that should be considered when interpreting the results. 

8.1 Study Limitations 
In our evaluation study, the tasks were manually made more com-
plex and less clean to always include errors when presented to the 
AI tools to require further verification and steering. However, this 
may have impacted the ecological validity of the the tasks. Another 
challenge to ecological validity is our decision to provide the initial 
NL query for each task, which does not reflect how these systems 
would be used in practice, and reduced the opportunity for us to 
study the consequences of divergent natural prompting strategies. 
For our study, this was an acceptable trade-off as it guaranteed 
that all participants would encounter the same steering and ver-
ification needs, which allowed clearer comparisons between the 
different systems. It also allowed us to sidestep the issue of partici-
pant queries being unevenly “primed” by the task description [60]. 
Future work may relax this constraint to study a wider range of 
participant prompting strategies. 

Typicality and novelty preferences may have influenced how 
participants ranked their preference of features or system [34]. Par-
ticipants might also be biased towards systems they believe are of 
personal interest to the researcher (known as the “yours is better” 
bias) [16]. As a mitigating measure, the researcher did not associate 
themselves with the prototypes in this study and elicited reflections 
grounded in participants’ concrete experiences rather than subjec-
tive perceptions [6]. These reflections were further corroborated 
through screen recordings and usage logs [13, 62]. 

Participants only used each system for a short time (30 minutes 
per system, not including the tutorial), which is typical of controlled 
experiments in laboratory settings. These cannot capture long-term 
effects [80]; some phenomena only emerge over long-term use and 
some phenomena which appear to be salient with short-term use 
erode over time. Consequently, future work could aim to cross-
validate our findings longitudinally using experience sampling [12] 
or diary studies [75]. 
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8.2 System Limitations 
During the study, we observed limitations in how the system prop-
agated users edits, both upstream and downstream. The first limi-
tation involved propagating changes from edited assumptions to 
generated code, where in some cases the language model would 
appear to ignore the edits. This is a fundamental failure mode of 
generative AI systems, however, system implementations and in-
terfaces can exacerbate the issue. Complex prompting approaches 
with many instructions can make it unlikely that the model iden-
tifies small changes to assumptions. Additionally, distinguishing 
assumptions in the interface can set incorrect user expectations 
around how a model attends to assumptions. 

Another limitation of the system is that edits to downstream 
code or assumptions are not propagated to upstream assumptions, 
and if a user makes an earlier edit it will overwrite any subsequent 
changes. The intention behind this prima facie design decision was 
to present a simple model of “cause and effect” that represented 
how completions were generated, namely, the context of any point 
in the system is only that which appears before. Some participants 
identified this limitation and it influenced their steering preferences, 
choosing not to edit an assumption because it would clear changes 
that had been made to code. 

9 Conclusion 
In this work, we explore the design space of AI-assisted data anal-
ysis tools by presenting two novel interfaces that aim to improve 
steering and verification. Starting from the observation that task 
decomposition is an emerging characteristic of recent LLM-based 
systems, we developed two systems that explore different modes 
of interactive task decomposition, each based on unique trade-offs. 
The first, Stepwise, decomposes the problem step by step; the sec-
ond, Phasewise, decomposes the problem into logical phases. Our 
evaluation demonstrates that users experienced a greater sense of 
control and confidence with our systems in comparison to a chat-
based baseline. Still, task decomposition is not without preference 
or cost. Some users prefer to work through the task incremen-
tally, whilst others prefer to see the plan upfront. Additionally, 
highly-structured decomposition can introduce cognitive burden. 
Consequently, we imagine that future AI interfaces will need to 
support adaptive decomposition that reacts to the user and task. 
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