
Excello: exploring spreadsheets for music composition

Henry Mattinson
Computer Laboratory

University of Cambridge
15 JJ Thomson Avenue, Cambridge, UK

henrymattinson@westfieldhouse.org

Advait Sarkar 1,2

1Microsoft Research
21 Station Road, Cambridge, UK

2University of Cambridge
advait@microsoft.com

ABSTRACT

Excello is a spreadsheet-based music composition and pro-

gramming environment. We co-developed Excello with

feedback from 21 musicians at varying levels of musical and

computing experience. We asked: can the spreadsheet in-

terface be used for programmatic music creation? Our de-

sign process encountered questions such as how time should

be represented, whether amplitude and octave should be en-

coded as properties of individual notes or entire phrases, and

how best to leverage standard spreadsheet features, such as

formulae and copy-paste.

We present the user-centric rationale for our current de-

sign, and report a user study suggesting that Excello’s no-

tation retains similar cognitive dimensions to conventional

music composition tools, while allowing the user to write

substantially complex programmatic music.

Author Keywords

Spreadsheets, end-user programming, notation, cognitive

dimensions

CCS Concepts

•Applied computing → Sound and music comput-

ing; Performing arts; •Information systems → Music

retrieval;

1. INTRODUCTION

Programmatic environments for music creation, such as

ChucK [15] or Sonic Pi [1], enable the creation of complex

and dynamic compositions with rich and interactive feed-

back. However, these systems are extremely hard to learn,

especially for users new to programming.

On the other hand, spreadsheets are a well-known and

easy to learn programming environment. The 2-dimensional

grid, along with support for computation, annotation, and

visualization, forms the basis for the world’s most ubiqui-

tous non-expert end-user programming environment. There

are four times more spreadsheet users than software devel-

opers [14], and spreadsheets are the preferred programming

Licensed under a Creative Commons Attribution

4.0 International License (CC BY 4.0). Copyright

remains with the author(s).

NIME’20, July 21-25, 2020, Royal Birmingham Conservatoire,
Birmingham City University, Birmingham, United Kingdom.

language for many people [9]. This ubiquity, along with the

affordances of the spreadsheet, enables new ways to interact

with musical notation that capitalise on existing familiarity

with spreadsheets and their data handling capabilities.

We present Excello (Fig. 1, shown here in use with a study

participant’s arrangement), an Excel add-in for end-user

music programming. The Excello add-in opens a pane on

the right side of Excel. The user defines notes and ‘turtles’

in the cells of the spreadsheet. Turtles are programmable

playheads that move through the grid using a simple in-

struction language. Notes in cells are played when turtles

move through them. When the play button is pressed, the

melodic lines defined by all turtles are played simultane-

ously (by default using a sampled piano sound).

2. EXCELLO’S DESIGN

2.1 Design process

Excello’s design is grounded in concrete user needs and feed-

back. Twenty-one University of Cambridge students, across

a range of subjects, took part in the participatory design

process. We conducted initial feedback sessions as follows:

one-on-one tutorials on the initial prototype were given, fol-

lowed by a short exercise of the participant’s choice; either

transcribing a piece from memory or from staff notation

into the Excello notation, or modifying and extending a

composition already written in Excello. Next, users were

interviewed about their experience, drawing particular at-

tention to actions that they found unintuitive or requiring

notable mental effort. Comparisons were made to musical

interfaces with which participants were already familiar.

These sessions were conducted in January 2019. Partici-

pants continued using Excello for the next 7-8 weeks, until

the summative evaluation sessions in March, ensuring that

the evaluation was conducted on participants with signif-

icant experience using Excello. Additional feedback was

collected as participants used Excello in their own time.

In the next section, we explain and describe some of the

interesting and important design issues that arose in con-

sultation with our participants.

2.2 Abstracting time with turtles

The spreadsheet’s chief advantage is its 2-dimensional grid,

which allows the end-user to spatially organise their com-

putations and data. Many music composition environments

also use grid structure, albeit in a limited fashion. For ex-

ample, MIDI sequencers [8] typically use the horizontal axis

for time, and the vertical axis for pitch or musical parts.

Manhattan [12] uses a grid where formulae can define a

1
11



Figure 1: An arrangement with separated and labelled parts per instrument. Turtles use a global tempo in cell H2.

cell’s value, like in a spreadsheet. However, it is limited

to columns defining tracks and rows corresponding to time.

Similarly, other spreadsheet music projects1 only use the

spreadsheet grid with the conventional sequencing layout,

sacrificing the flexibility of using both grid axes.

SheetMusic [13] was the first investigation of formulae

with sound output within the spreadsheet paradigm. Sheet-

Music abstracts time away from the grid using an incre-

menting global tick variable which could be referred to in

formulae. Both axes can be used interchangeably for Sheet-

Music notation or non-musical markup (e.g., data, labels,

formatting), a concept idiomatic to spreadsheets. Music is

notated with formulae such as: if(tick%2==0) p(‘snare’)

else p(‘kick’), which plays an alternating snare and kick

sound. However, such formulae quickly become unwieldy

for larger pieces, especially if they are not highly repetitive.

How do we compactly represent time without sacrificing

a grid axis? To solve this problem, we apply the metaphor

of turtle graphics [5]. In the Logo programming language,

agents known as ‘turtles’ are programmed to produce graph-

ical output: e.g., repeat 4 [forward 5 right 90] has a

turtle move forwards 5 units and turn right 90 degrees, to-

gether repeated four times, to draw a square.

The turtle abstraction is employed by Excello by defining

notes in cells, and agents, known as turtles, move through

the spreadsheet playing them. Al-Jazari [10] also uses the

turtle metaphor, albeit in a limited fashion. In Al-Jazari,

robotic agents navigate around a two-dimensional grid. Dis-

tance in space maps to time [11]. Excello extends this, as

turtles can move at different speeds. Therefore parts with

varying speeds, and phase music (where identical parts are

played concurrently at different speeds) can be defined more

concisely. Moreover, Al-Jazari’s agents are programmed

1https://hackaday.com/2019/02/02/
never-mind-the-sheet-music-heres-spreadsheet-music/

with movement symbols in thought bubbles above them.

This is unlike spreadsheets where both data and compu-

tation logic exist in the same grid. Al-Jazari’s grid only

measures ten cells wide and long, which greatly simplifies

and constrains agents’ movements.

2.3 Encoding musical notes

Notes are written using scientific pitch notation (SPN); e.g.

F#4 is the F� above middle C. Empty cells and the full stop

character (.) denote rests. The character s or - instructs

the turtle to sustain the previously played note, and a cell

can be subdivided using commas into multiple equal length

notes (Figure 2). The combination of sustains and subdi-

visions allows the composer to choose the most convenient

note duration to correspond to each cell. Without subdi-

vision, a piece defined primarily with crotchets (one unit)

but with occasional quavers (half a unit) would need twice

as many cells and many additional s cells.

Figure 2: Two identical phrases, defined (above) by using
sustains or (below) with subdivided cells.

Octave numbers can be omitted for brevity; during

testing we discovered that repeatedly writing the octave

number was tiresome. If omitted, we use the last explic-

itly notated octave encountered by the turtle. We tested

two methods for octave inference: playing the note in same

octave as the previous note, or choosing the octave in which

the note would be nearest to the previous note. Both

have advantages and disadvantages. The nearest-octave ap-

proach may require fewer explicit statements of octave num-

2
12



Concept Encoding
Note Name (A-G), optional accidental,

octave number and dynamics
e.g. F#4 pp

Sustain s or -
Time-subdivided
notes

Notes, rests or sustains separated
by a comma. Rests must be a space
or an empty string e.g. E4, ,C4,s

Rest Any cell not interpreted as a note,
sustain or multi-note. Rests can be
explicitly denoted with ‘.’

Table 1: Summary of note encoding.

bers, but it is harder for a reader to immediately identify

the octave of any given note; they would need to locate the

last explicit octave notation and walk through subsequent

notes, keeping track of the inferred octave. The same-octave

approach may require many octave definitions if a melody

frequently crosses the boundary between octaves, but it is

much easier for the reader to identify the octave of a note by

backtracking, and this was the trade-off our users preferred.

Dynamics Just as dynamics in western notation are a

property of the staff, not of individual notes, dynamics were

originally defined in the turtle, not in notes, using the sym-

bols pp p mp mf f ff (etc.) next to turtle movement com-

mands. However, users found that dynamics, being un-

related to movement, made it harder to read the turtle’s

path. Furthermore, as dynamics weren’t next to the notes

to which they corresponded, knowing the volume of a note

or where to place the dynamics within the turtle to apply

to notes in the spreadsheet was challenging.

Thus, we settled on dynamics being defined in the cells

after the note, separated by a space as in Manhattan [12].

In addition to Western dynamic symbols, a number between

0 (silent) and 1 (equivalent to fff) can be used. Like oc-

tave numbers (and indeed, like staff notation), a dynamics

specification applies to all following notes until the turtle en-

counters another explicit specification. Table 1 summarises

our note encoding.

2.4 Encoding the turtle’s path

The following formula-like syntax defines a turtle:

!turtle(Start_Cell, Instructions, Tempo, Loops)

The prefix “!” signals that the turtle is active; omitting this

prefix causes the turtle not to play, analogous to muting and

soloing in digital audio workstations / music sequencers.

Instead of typing this text directly, the user can also de-

fine a turtle using the formula function EXCELLO.TURTLE,

enabling users to leverage the built-in autocompletion and

cell referencing features of Excel. The output of this func-

tion is our textual turtle notation (Figure 4).

Figure 3: A short melody in an early prototype (above)
with its output in staff notation (below).

Figure 4: Defining a turtle using EXCELLO.TURTLE.

Start Cell The turtle’s starting cell (A2 in Figure 3),

which is also played, is a cell reference (a concatenation of

letters for the column and numbers for the row). As each

turtle only plays one note at a time, multiple turtles must

be defined for polyphony. A common user pattern was to

define turtles following identical paths but in adjacent rows

or columns. To simplify this process, we made it possible

to instantiate multiple turtles using Excel’s range notation.

Setting the starting cell to A2:A5 defines four turtles in the

cells A2,A3,A4,A5. This removes the need for multiple turtle

definitions differing in only the start cell.

Tempo An optional third argument is the speed of the

turtle in cells per minute (the default is 160). An early

implementation required this as a multiplier for 160 (thus

1 corresponded to 160 cells per minute, 0.5 corresponded

to 80 cells per minute, etc.), so that it would be easier to

tell the speed relation between turtles. This particularly

suits phase music. However, participants felt calculating

this speed factor was effortful and unnatural so we switched

to cells per minute. Luckily, in a spreadsheet environment,

it is still straightforward to implement relative tempi using

formulae: turtles could reference a single cell containing a

‘base’ speed, and apply a turtle-specific multiplier.

Loops An optional fourth argument defines the number

of repetitions of the turtle’s entire path (e.g., the turtle in

Figure 3 plays 1 time). By default, turtles loop infinitely.

Turtle motion Turtles begin facing north (towards the

top of the screen). Like Logo, turtles always move in the

direction they are facing. The commands l and r turn the

turtle 90 degrees left and right respectively, and commands

n, e, s and w directly re-orient the turtle north, east, south

and west. The command mmoves the turtle one cell forward.

Commands are repeated by placing a number immediately

after it (this is less verbose than Logo’s notation: repeat

followed by the number of repeats and the commands [5]).

Thus, m4 moves the turtle forwards four cells in the direc-

tion it faces. Commands can be nested within parentheses,

and nested commands can be repeated. Thus, (r m5)4 de-

fines a clockwise path around a five-by-five square. Nested

instructions with repeats allow concise notation of repeated

sections and movements.

Just as conventional staff notation spans multiple lines,

splitting melodies into parts spanning multiple rows is a

useful layout for human readers. This requires the tur-

tle to move to non-adjacent cells. In Logo, lifting the

pen allows the turtle to move without drawing a line; the

graphical output is unaffected by the turtle’s path in ‘pen-

up’ mode. However, Excello’s musical output depends on

the turtles’ movements in time, so a ‘pen-up/pen-down’

metaphor would introduce large rests as the turtle moved to

its destination. Thus, our language supports jumps with j.

Jumps are either absolute, with a destination cell (e.g., jA5),

3
13



Figure 5: Turtle with repeating jump instructions.

or relative (e.g., j-7+1), with a column-row offset. Rela-

tive jumps enable concise patterns. For example, r (m3 j-

3+2)2 m3 plays 3 rows of 4 cells from top to bottom, playing

each row left to right (Figure 5).

Automatic path length counting Writing turtle in-

structions requires counting cells on the grid. If a sequence

of notes is in a straight line, the user can select the cells and

see a count in the Excel status bar. However, this requires

manual effort and is error-prone, and users found it particu-

larly inconvenient when adding notes to a partially complete

line and periodically testing the composition written so far.

Some users instructed turtles to move forward significantly

more steps than required to avoid counting steps, but this

strategy doesn’t work for repeating paths.

We thus implemented m*, which instructs a turtle to move

as far as there are notes defined in the direction it is facing.

After adding notes to the end of a line, the turtle instruc-

tions do not need editing before pressing play. A cell can

be explicitly defined as a rest with a full stop (.). This is

required if multiple turtles are playing a repeating section

where some turtles end on rests, and others on notes. With-

out an explicit rest, the turtle would repeat too soon and

the parts would subsequently be out of alignment.

2.5 Excello’s use of spreadsheet affordances

Highlighting To provide visual structure, turtle definitions

are automatically highlighted green. Cells containing defi-

nitions of notes, or multiple notes, are highlighted red. Sus-

tain cells are highlighted a lighter red, showing correspon-

dence to notes whilst maintaining differentiation.

Chord Input To play a chord, multiple turtles must si-

multaneously pass through multiple cells corresponding to

the notes of the chord. Each cell and turtle is only re-

sponsible for up to one note at a time, maintaining high

notational consistency, as grid cells encode musical entities

at only one level of musical abstraction (notes). However,

this sacrifices the chord abstractions in languages like Sonic

Pi, such as chord('F#', 'maj7'), forcing users to constantly

think of chords in terms of their constituent notes, which

can inhibit the flow of composition. Our solution was to

include a tool for adding chords (right sidebar of Figure 1).

The user selects the chord root, type, inversion and starting

octave from menus. The insert button enters the notes of

the chord into the grid where the user has made a selection.

Notes are inserted to “fit” the shape of the selection (ver-

tical or horizontal), and for a vertical selection, notes are

inserted from top to bottom in decreasing pitch order, to

mimic staff notation (based on user feedback).

Transpose Some users found it more intuitive to consider

a melodic line by the intervals between notes rather than

by the note names. Moreover, many users sought to define

harmony lines by a transposition from a melody line.

Thus, a transposition function EXCELLO.MODULATE lets

melodic lines be defined by the intervals between notes and

transposition of existing sections of a piece. The function

takes a cell and an interval and outputs the cell with any

notes transposed by the interval, maintaining any dynamics.

The advantage of implementing EXCELLO.MODULATE and

EXCELLO.TURTLE as spreadsheet functions is that it allows

users to take advantage of functionality such as drag-fill,

formula autocomplete, graphical cell referencing, etc. For

example, a section can be modulated by calling this function

on the first note with a provided interval and then using

spreadsheet drag-fill. A melodic line can be produced from

a starting note and a series of intervals as shown in Figure 6.

Figure 6: Transposing notes using EXCELLO.MODULATE

2.6 Example: Piano Phase

The first section of Reich’s Piano Phase is two identical pi-

ano melodies, one played slightly faster than the other [3].

The parts move out of phase, periodically aligning at dif-

ferent offsets. It can be implemented in Manhattan using

24 rows of 3 columns [12]. Sonic Pi requires one line for

the notes and eight for playback. Excello only requires two

cells to define two turtles with different speeds, in addition

to the notes. Piano Phase represented in these three sys-

tems is shown in Figure 7.

Figure 7: Comparing representations of Reich’s Piano
Phase. Top to bottom: Manhattan, Sonic Pi, Excello.

4
14



2.7 Implementation details

We implemented Excello as an add-in using the Office.js

API.2 When the play button is pressed, turtle definitions

in the grid are identified. For each, the starting cell and

movement instructions are used to establish the contents of

the cells it passes through. This is converted to a series of

note definitions: pitch, start time, duration, volume. These

are in turn passed to the the Tone.js library3 to schedule

and initiate playback.

3. COGNITIVE DIMENSIONS STUDY

Of the 21 initial participants, 19 continued using Excello af-

ter formative evaluation sessions over a period of 7-8 weeks

and participated in a user study. To ensure users sufficiently

understood the interface before giving feedback, features

added after the initial sessions were recapped, and partic-

ipants completed a short task requiring transcription of a

short melody and authoring an additional phrase.

To study the properties of our system, we applied Black-

well and Green’s questionnaire [2] for evaluating informa-

tion devices’ usability using the Cognitive Dimensions of

Notations (CDN) framework. For example, the dimension

Role Expressiveness (how much an element suggests its pur-

pose) is assessed by: “Are there some parts that are partic-

ularly difficult to interpret?”. CDN can be used to analyse

musical notation [4] and software systems [7], so is ideal for

evaluating Excello’s notation and interface.

We focused on closeness of mapping, consistency, sec-

ondary notation, viscosity and visibility. The questions

used are shown in Table 9. Users responded with a five-

point Likert scale. Responses were combined into negative

and non-negative categories. We tested the significance of

the response distribution versus a uniform distribution with

chi-squared tests. Chi-squared test p-value and modal re-

sponses are shown in Table 2. The distribution of responses

is shown in Figure 9.

3.1 Comparative evaluation

By way of comparison, CDN results were also collected for

the user’s preferred music composition interface. 12 users

chose Sibelius, which was used for comparison. We think

this is a better comparison than to ChucK or Sonic Pi, since

Excello is designed to be an accessible introduction to music

programming for musicians familiar with more conventional

notations.

The significance of each dimension varies for different cog-

nitive activities [6], so users identified the proportion of time

they spent carrying out these activities (searching for infor-

mation, translating, incrementation, modification and ex-

ploratory design). Figure 8 shows the time users reported

spending on the different cognitive activities in Excello and

in Sibelius, based on results from 19 users for Excello and

12 for Sibelius. Translation is important for both interfaces.

Users perceived spending more time on modification and in-

crementation in Excello. Little time is spent searching in

either tool.

We compared participants’ answers to the questions in

Table 2 for Excello and Sibelius. We performed a Wilcoxon

2https://docs.microsoft.com/en-us/javascript/api/
excel
3https://tonejs.github.io/

0 50 100

Searching

Translation

Incrementation

Modification

Exploratory Design

Time (%)

Sibelius

0 50 100

Percentage of Time

Excello

Figure 8: The proportion of time users reported spending
on the different cognitive activities.

Statement CDN Mode p

(a) The notation
used (In Excello: notes/

Closeness Agree 0.0004

dynamics in cells and
the definition of turtles)

of

is related to the result
you are describing (In

Mapping

Excello: Musical out-
put)

(b) Where there are
different parts of the

Consistency Agree 0.0087

notation that mean
similar things, the
similarity is clear from
the way they appear.

(c) You can add ex-
tra marks (or colours or

Secondary Agree 0.0020

format choices) to clar-
ify, emphasise or repeat

Notation

what is there already.

(d) When you need
to make changes to

Viscosity Agree 0.0004

previous, work it is easy
to make the change.

(e) It is easy to see or
find the various parts of

Visibility/ Agree 0.0087

the notation while it
is being created or
changed.

Juxtaposition

(f) If you need to
compare or combine dif-
ferent parts, you can see

Visibility/ Agree 0.0312

them at the same time. Juxtaposition

Table 2: CDN of Excello: questions and results.

matched pairs signed-rank test on the 12 pairs by encoding

the five responses as -2,-1,0,1,2. For all six questions, there

is no indication that the answers for the two interfaces come

from populations with different means (i.e., no significant

differences).

Closeness of mapping We found no significant dif-

ference between Sibelius and Excello, suggesting Excello’s

spreadsheet notation has not compromised the closeness of

mapping (to the musical domain) of staff notation.

5
15



Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

0

2

4

6

8

10

12

14

F
re
q
u
en

cy

Figure 9: CDN of Excello: distribution of responses (colour
legend from Table 2).

Consistency We found no significant difference between

Sibelius and Excello, suggesting that Excello’s notation is

no less consistent than staff notation. Each cell and turtle

only produces one note at a time. Excello keeps consistency

with Excel by sharing notations (e.g., A1:A5 for ranges) and

using the existing formula editor.

Secondary notation We found no significant difference

between Sibelius and Excello, suggesting that the spread-

sheet paradigm can provide secondary notation abilities

similar to Sibelius, software already equipped with numer-

ous ways to customise a score. Given the time spent trans-

lating, secondary notation is particularly important [4]. As

Excello abstracts time from the grid axes, existing Excel

features for formatting and grouping cells remain available.

Viscosity We found no significant difference. This sug-

gests the interfaces have comparable viscosity. Allowing dy-

namics and octave marking to be omitted and letting turtles

count steps automatically, provides low resistance to mak-

ing additions and changes to the music. Furthermore, Excel

provides easy editing and movement of cells.

Visibility/Juxtaposition We found no significant dif-

ference. This suggests that the spreadsheet interface can

provide a similar ability to view components as Sibelius.

4. CONCLUSION

We set out to explore the hypothesis that spreadsheets

would provide a productive medium for musical expression.

Excello is a notation and corresponding program for musi-

cal playback implemented within Microsoft Excel. By ab-

stracting time away from the axes of the grid, the exist-

ing functionality of Excel (whitespace, formatting, layout,

copy-paste and data storage) remains highly available and

useful. Excello was developed in close consultation with a

group of 21 users, as a result of this, many nuances in nota-

tional design were discovered, and our solutions were shown

to improve the interface and make it competitive (on cog-

nitive terms) with conventional composition tools. Excello

provides a simple, yet powerful interface for musical compo-

sition and programming to the hundreds of millions of users

already familiar with the spreadsheet interface.

In future work, we aim to explore live editing of the piece

as it plays, and graphical enhancements to show the loca-

tions of turtles during playback.

5. ETHICAL COMPLIANCE
Our study was approved by the Cambridge University com-

puter science departmental ethics review board. We con-

ducted pilot studies of the formative and summative evalu-

ation sessions, resulting in revisions to the protocol. Partic-

ipants were briefed, and signed forms of informed consent.

Participant data was anonymised and any audio recorded

during the sessions was transcribed and deleted.

6. ACKNOWLEDGEMENTS
We thank Alan Blackwell for discussions, and our study

particpants for their time and effort.

7. REFERENCES

[1] S. Aaron. Sonic pi–performance in education,

technology and art. Int. J. Performance Arts and

Digital Media, 12(2):171–178, 2016.

[2] A. F. Blackwell and T. R. G. Green. A Cognitive

Dimensions questionnaire optimised for users. In

PPIG, 2000.

[3] P. Epstein. Pattern Structure and Process in Steve

Reich’s “Piano Phase”. The Musical Quarterly,

72(4):494–502, 1986.

[4] A. F. Blackwell, T. Green, and D. Nunn. Cognitive

Dimensions and Musical Notation Systems. Workshop

on Notation and Music Information Retrieval, 11

2000.

[5] R. Goldman, S. Schaefer, and T. Ju. Turtle geometry

in computer graphics and computer-aided design.

Computer-Aided Design, 36:1471–1482, 2004.

[6] T. Green and A. Blackwell. Cognitive dimensions of

information artefacts: a tutorial. Technical Report

Version 1.2, BCS HCI Conference, 1998.

[7] T. Green and M. Petre. Usability Analysis of Visual

Programming Environments: A ‘Cognitive

Dimensions’ Framework. Journal of Visual Languages,

7:131–, 06 1996.

[8] D. Hosken. An introduction to music technology.

Routledge, 2014.

[9] S. P. Jones, A. Blackwell, and M. Burnett. A

user-centred approach to functions in excel. In

Proceedings of the eighth ACM SIGPLAN

international conference on Functional programming,

pages 165–176, 2003.

[10] A. McLean, D. Griffiths, N. Collins, and G. Wiggins.

Visualisation of live code. Electronic Visualisation

and the Arts (EVA 2010), pages 26–30, 2010.

[11] A. McLean and G. A. Wiggins. Texture: Visual

notation for live coding of pattern. In ICMC, 2011.

[12] C. Nash. Manhattan: End-User Programming for

Music. In NIME, 2014.

[13] A. Sarkar. Towards spreadsheet tools for end-user

music programming. In Psychology of Programming

Interest Group (PPIG), pages 228–231, Sept. 2016.

[14] C. Scaffidi, M. Shaw, and B. Myers. Estimating the

numbers of end users and end user programmers. In

2005 IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC’05), pages

207–214, Sep. 2005.

[15] G. Wang, P. R. Cook, and S. Salazar. Chuck: A

strongly timed computer music language. Computer

Music Journal, 39(4):10–29, 2015.

6
16


	Introduction
	Excello's design
	Design process
	Abstracting time with turtles
	Encoding musical notes
	Encoding the turtle's path
	Excello's use of spreadsheet affordances
	Example: Piano Phase
	Implementation details

	Cognitive dimensions study
	Comparative evaluation


