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Abstract

Bike sharing systems are emerging all over the world as a cheap, green, and

healthy mode of public transit. While there is great variety in their implemen-

tation, at their core they are all similar: they consist of bike stations, each con-

taining a number of docking points, from which bicycles may be borrowed and to

which they may be returned. These systems suffer from a number of open prob-

lems: designing effective bicycle redistribution schemes, optimising the placement

of stations, and choosing station capacities, among others.

In this project, we use data from 10 such systems to develop and evaluate reusable

techniques for their design and administration. Our study is the first to develop

and apply uniform analytical methods across several disparate systems, enabling

inferences at a previously unavailable level of generality.

In particular, we present methods for the unsupervised discovery of naturally-

occurring groups of stations by three separate notions of behaviour. These meth-

ods facilitate the design of redistribution vehicle schedules, identification of can-

didate zones for station addition/removal, and selection of station capacities. We

also investigate the prediction of station utilisation at fixed intervals in the future.

We demonstrate the utility of our techniques, which require only very simple, low-

dimensional, and publicly-available data, by drawing general inferences about the

behaviours of bike sharing systems. We discover evidence that relates the size of

a system to its behavioural heterogeneity, and evidence to suggest that there is

a significant amount of transferable knowledge between systems of similar sizes.
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Chapter 1

Introduction

A bicycle sharing system (or bikeshare) is a service that makes bicycles available

for shared use to communities. The bicycles can be used for short journeys in

urban areas as an alternative to private vehicles or motorised public transport.

Communal benefits include reduced traffic congestion, noise and air pollution,

and improved public health. Bikeshares have also been touted as a solution to

the “last mile” problem, i.e., connecting users to public transit networks.

Barcelona (Bicing) Rio de Janeiro (BikeRio) London (Barclays)

Figure 1.1: Stations at bike sharing systems around the world.

These systems address many of the disadvantages of bicycle ownership, including

entry price, susceptibility to theft and vandalism, parking and storage require-

ments, and maintenance. However, by restricting the locations where bicycles

may be borrowed and returned, the service becomes a form of public transit,

sometimes less convenient than a privately-owned bicycle.
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There are several open problems suffered by existing systems that we need to

better identify and understand in order to build bike sharing systems more effec-

tively. For example, Transport for London has acknowledged that redistribution

of bikes is a genuine problem [1], as the scale of the redistribution required was

underestimated. A user satisfaction survey conducted by the London Assembly

identifies a lack of bikes and docking points as a major issue [2].

The systems are difficult to model and analyse at a high level of generality because

of large differences in the characteristics of individual cities. System designers and

administrators would benefit [3] from general methods that enabled them to

• improve the efficiency of bicycle redistribution schemes, e.g. through better

schedules and routes for effective redistribution at lower costs,

• reduce maintenance overhead per station, for instance by setting better

station capacities so that unnecessary docking points are not built, and

• improve user satisfaction, for example by ensuring a high probability of

– a station being within walking distance

– said station having a bike available

– destination stations having an empty space available

by better placing their stations across the city.

Identification of common themes, if any, would help solve some of these problems

in ways that were reusable and immediately applicable to new systems. Core

to this activity is the performance of an inter-city analysis. In this project,

we explore the utility of large-scale data mining techniques to uncover a better

understanding of the dynamics of these systems.
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1.1 Objectives & outline

The objective of this project is not to conclusively solve the problems outlined

above. Rather, we aim to develop data-driven analytical frameworks that are

applicable in the general context of bike sharing systems.

Concretely, this project comprises the following:

• In Chapter 2 we introduce the dataset and present some preliminary anal-

ysis. We first describe the nature of the data we gathered in §2.1. We

then present our data cleaning and preprocessing pipeline in §2.3. Finally,

we present an analysis of the aggregate daily behaviour of each of the bike

sharing systems under investigation in §2.4. We discover intercontinental

differences as well as stark differences in weekday and weekend usage.

• Our work in Chapter 3 is concerned with detecting naturally-occurring

groups of stations that behave similarly to one another. We first describe

our general approach to the unsupervised clustering problem in §3.1. We

then describe three specific notions of station behaviour and discuss our

results in §3.2, §3.3, and §3.4 respectively. We show that our clustering

methodologies can be used to inform redistribution vehicle routes, improve

station location positioning, and choose station capacity ranges.

• In Chapter 4 we attempt to predict the number of bicycles at a station at

fixed intervals in the future. We formulate the problem and test strategy in

§4.1, and present our evaluation metrics in §4.2. We describe our predictive

models in §4.3 and the nature of our training data in §4.4. We discuss their

performance and the implications of the results in §4.5 and §4.6.

• Finally, we present our conclusions in Chapter 5. We summarise our key

analytical results and contributions, and explain the immediate applicabil-

ity of this work. We discuss some limitations of our study and describe

avenues for future work that are now open.
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1.2 Previous work

The computational analysis of bike sharing systems is a somewhat niche area of

research. This section presents an overview of the relevant work in the area.

Froehlich, Neumann and Oliver applied clustering techniques to identify patterns

of behaviour in stations in Barcelona’s “Bicing” system, explaining their relation

to location and time of day [4]. They also built and evaluated a number of

predictive models for the stations of the system.

Lathia, Ahmed and Capra used clustering techniques similar to those of Froehlich

et al.’s to conduct a study on London’s Barclays bike sharing scheme [5]. They

leveraged the same analytical framework to assess the impact of opening up the

scheme to casual users, and were able to quantify notable differences in the way

the system was used prior to and after the policy change.

Guenther et al. built and validated a number of arrival forecasting models based

on journey data from the Barclays Cycle Hire scheme in London [6]. The work

was concerned with forecasting the cumulative arrivals in small geographic clus-

ters of stations (falling within 500m×500m squares) during peak hours. They

were able to show that their two models, based on time-inhomogeneous popu-

lation CTMCs1 and multiple linear regression with ARIMA2 error, were able to

marginally outperform previous models which did not use journey data.

Randriamanamihaga et al. used clustering techniques that exploit Poisson mix-

ture models to find temporal clusters in the origin-destination flows of bicycles

in Paris’ Vélib system [7]. They showed that people’s journeys could be broadly

classified into “weekend joyrides”, “nightlife”, “morning work” and “early bird”.

Similarly, Shu et al. also developed a network flow model to examine the effective-

ness of various schemes for bike deployment and redistribution in Singapore [8].

They modelled origin-destination demand for 3 bicycle stations based on the

corresponding flows in Singapore’s mass transit land trains.

1Continuous Time Markov Chains
2AutoRegressive Integrated Moving Average
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Lin and Chou explored the bicycle redistribution problem as a special case of

the more general vehicle routing problem [9]. They prototyped a system which

leveraged publicly-available road data to make use of actual path distance to

solve the vehicle routing problem, rather than use simple Euclidean distance,

which had previously been the norm. They evaluated their prototype on the

Kaohsiung C-Bike and Washington Capital Bikeshare systems, and were able to

generate vehicle routes with marginally lower travel distance and time compared

to the routes being used otherwise.

Each of the studies mentioned in this section only look at a single system, some

at even smaller subsets, and so lack the richness in data required to make higher-

level generalisations. System simulations, as in Shu et al., 2011, usually make

a number of simplifying assumptions (e.g. that there are only 3 stations in the

system), and as a consequence the results are difficult to deploy industrially.

Previous research on origin-destination flows is not reproducible across several

cities because that data is not always publicly available.

Consequently, the studies conducted by Lathia et al. and Froehlich et al. form

the two core texts upon which our study is built and upon which we now expand.

Our analytical framework, which neither considers network flows, nor attempts

to simulate the interaction between stations, requires only very simple data that

is publicly available for many bike sharing systems.
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Chapter 2

Preliminary Analysis

Before we began our in-depth analysis of bike sharing systems, it was first neces-

sary to gather, preprocess, and conduct preliminary analysis of the data. In this

chapter we first specify the nature of our data (§2.1), then describe our prepro-

cessing and cleaning pipeline (§2.3), and finally conduct a preliminary discussion

of the usage patterns of the bike sharing systems on an aggregate level (§2.4).

2.1 Data gathering

A bike sharing system contains a number of stations. Each of these stations hosts

a number of docks/slots where a bicycle may be parked. These systems typically

provide a web service where a user can check how many bicycles and vacant slots

are currently available at any given station in the system. From January 1st,

2011 onwards, we sampled these numbers every two minutes by scraping the web

services of the 10 bike sharing systems in Table 2.1.

The web services also provide an interactive map displaying the locations of the

stations, from which we gathered latitude and longitude coordinates for each

station at every two-minute interval. Since these coordinates are generally static

over time, new coordinates for a given station were appended to the record only

if they did not match the previously recorded coordinates for that station. For

the majority of bike stations we had a single recorded location, but for some

there were multiple locations. In §2.3 we offer some possible reasons for this, and

explain how we resolved multiple locations.
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City System Country
Joao Pessoa SAMBA Brazil
Siracusa GoBike Italy
Taipei YouBike Taiwan
Girona GiroCleta Spain
Rio de Janeiro BikeRio Brazil
Rome Roma‘n’Bike Italy
Miami DecoBike U.S.A.
Denver Denver B-Cycle U.S.A.
London Barclays Cycle Hire England
Barcelona Bicing Spain

Table 2.1: Bike sharing systems from which data was gathered.

We gather no other data. It is important to note that we sample only the numbers

of bicycles and vacant docking points at each station, but not the origin and

destination of bicycles, because that is not available. As data about the trajectory

of individual journeys is not made available on these web services, we are unable

to reason about the bicycle sharing systems as networks. However, as we found,

even focusing on the number of bikes and vacancies at each station as univariate

time series yields considerable insight.

2.2 Terminology

The following terminology is used throughout the report.

• Observation: a sample of the number of bikes and vacancies at a single

station at a certain timestamp. An observation is generally a tuple of the

form (b,v). When observations are part of a series, individual observations

are indexed using subscripts; the ith observation is referred to as (bi,vi).

• Day: a period of 24 hours starting at 00:00:00 and ending at 23:59:59.

• Capacity: the number of docks (thus, the maximum number of bicycles it

is possible to deposit) at a particular station.
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• Occupancy: the fraction of the station’s total docking points occupied by

bicycles at a given point in time; the “fullness” of a station. For example, if a

station has a capacity of 20, and there are 5 bikes at the station, the station

has an occupancy of 0.25. A station with occupancy=1.0 is completely full

and a station with occupancy=0.0 is completely empty.

We use occupancy to describe the instantaneous state of stations throughout

as it is capacity-independent. It allows us to meaningfully compare stations

with different capacities. Across our 10 systems, there are 996 stations in

total, which range from small (capacity ≈ 10) to quite large (capacity ≈ 50).

2.3 Data preprocessing

The data was not in a readily usable format and suffered from a few types of

noise. We now describe our preprocessing and cleaning pipeline, which is loosely

based upon the procedures used by Froehlich et al. 2009, and Lathia et al. 2012.

We attempted to sample the number of bicycles and vacancies at each bicycle

station every two minutes starting from January 1st, 2011. However, the periodic

downtime of the server running the web crawler and unexpected modifications

to the web services caused gaps in the dataset. Consequently, we restricted the

period under investigation to lie between the 23rd of March, 2011 and the 6th of

August, 2011, inclusive. This period spanning approximately 4.5 was the largest

contiguous region of uncorrupted data common to all cities.

The timestamps recorded for each observation were in UTC. To relate our tem-

poral analysis to local contexts, the timestamps were converted into local times,

taking into consideration regional changes due to daylight savings-like schemes.
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2.3.1 Inferring station capacity & filtering observations

While the capacity of a station is not directly reported by the web services we

scraped, it is possible to infer a station’s capacity by adding together the number

of available bikes and the number of available vacancies at any given time. One

might expect that this sum, this “inferred” capacity, would remain constant over

time, given that an increase in the number of available bicyles directly results in

an equal decrease in available vacancies, and vice versa. In practice, however, this

number is occasionally off-by-one or negative, a phenomenon likely attributable

to malfunctioning bicycle/dock sensors.

In Lathia et al. 2012, these errors were accounted for by picking the 95th per-

centile of observed station capacities for each station and setting that value as

the assumed capacity. This fixes a single capacity across the entire period being

studied. However, this method does not allow for genuine changes in station

capacity, such as those caused by the addition or removal of docks, which is a

frequent occurrence in systems with active maintenance schemes.

We allowed for genuine fluctuations in capacity by calculating a capacity for ev-

ery observation. That is, for an observed tuple (b,v), the capacity at the time

of observation is assumed to be b + v. To account for erroneously reported ca-

pacities, we removed observations where the calculated capacity appeared fewer

than 720 times across the entire dataset. At two-minute intervals, we make 720

observations per station per day. Therefore, any calculated station size must be

reported for at least a day’s worth of observations in order to be considered a

genuine reflection of the station size.

A high number of invalid observations in a single day signals anomalous station

behaviour and potential problems with the remaining observations of the day. In

consistency with previous work, we removed all days with fewer than 504 (70% of

720) observations. Finally, we removed all stations with fewer than 62 remaining

days, i.e. 45% of our total 4.5 month period.
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2.3.2 Resolving station locations

Recall that in addition to the timestamped observations, we also recorded the

geographic coordinates of each station as reported by the web service. These are

not static, however, as bike stations are often renamed or moved. Occasionally

the location data was also corrupt, perhaps due to malfunctioning GPS sensors

or due to errors in the transport authority databases, causing coordinates that

were reported as zero or were out of the allowed range of values.

As we recorded all unique locations reported for each station, we had multiple

observed locations for many stations. As a station’s behaviour is highly dependent

on its location, data from a station that has been genuinely moved (i.e., that has

been dismantled and reconstructed elsewhere, e.g. in an adjacent street) cannot

be trusted, as the station is now effectively an entirely new station, despite being

referred to using the same station ID by the bike sharing system administrators.

We detected genuine location changes as follows: the pairwise ground distances

between all locations recorded for a single station were calculated using the Haver-

sine formula with the spherical-earth assumption [10]:

d = 2r arcsin

(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1) cos(φ2) sin2

(
λ2 − λ1

2

))
(2.1)

where d is the distance between two points whose latitude/longitude coordinates

are given by (φ1, λ1) and (φ2, λ2) respectively, and r is the radius of the earth.

If n locations l1, ..., ln were observed for a station, we calculated the distance

between each pair of locations li and lj, i 6= j.1 If any of these distances was

larger than 10m, the station was deleted altogether. If all distances were less

than 10m, the most recently reported location was assumed the truth.

The 10m threshold was chosen on the basis that a change in the reported position

of a station by less than 10m is not likely to reflect a change in the actual location

of the station, as most stations are themselves larger than 10m in size, and the

accuracy of civilian GPS positioning at the time of writing is ∼10m [11].

1For instance, if a station was reported to be at locations a, b, and c, the ground distances
between a and b, b and c, and a and c were calculated.
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Miami’s reported locations were particularly noisy, and this step caused the re-

moval of nearly 50% of its observation data. A more rigorous methodology would

optimise for the fraction of stations lost by varying this threshold. This was

beyond the scope of the current investigation, but is suitable for further study.

The data loss as a consequence of our cleaning is presented in Table 2.2.

City Observns.,
Pre-Clean

Stations,
Pre-Clean

Observns.,
Post-Clean

Stations,
Post-Clean

Observations
Retained (%)

Joao Pessoa 389260 4 381760 4 98.07

Girona 956510 10 945154 10 98.81

Taipei 1081630 11 975540 10 90.19

Siracusa 1750500 18 1740400 18 99.42

Rio de Janeiro 2132812 22 2091210 22 98.05

Rome 2941530 30 2924098 30 99.41

Denver 4907697 52 4787219 50 97.55

Miami 8158542 99 4589939 53 56.26

London 37954996 410 35414070 390 93.31

Barcelona 38674016 415 37087351 409 95.90

Table 2.2: Data loss due to cleaning.

2.4 Systemic occupancy series analysis

Our dataset is low-dimensional, but voluminous. With 720 daily observations for

∼1000 stations over ∼150 days, we have over 108 data points. We first analysed

this data at an aggregate level showing how daily usage varies across cities.

Recall that we define occupancy to be the fraction of the station’s total slots cur-

rently occupied by bicycles. We divided each 24-hour day into 240 6-minute bins;

00:00–00:06, 00:06–00:12, ..., 23:54–00:00. We then averaged the observations

within each bin on a per-station basis.

The averaged observations are tuples of the form (bi, vi), 1 ≤ i ≤ 240, where bi

and vi are the average number of bikes and vacancies in the ith bin respectively.

These tuples are then expressed as occupancies: oi = bi
bi+vi

. This occupancy series

was then averaged across all stations in a system to create two series representing

the system, one with weekdays only, and the other with weekends only.
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We separated weekdays and weekends because Froehlich et al., 2009 and Lathia

et al., 2012 both reported a clear difference in usage patterns between weekdays

and weekends. Our data confirms that this is true in general for bike sharing

systems, and not just for the specific system studied in those cases. There is

variation within the weekdays themselves, but it is small, and studying separate

series for each day does not yield significantly greater analytical value over simply

separating weekdays and weekends. This is a subject suitable for further research.

Consequently, for each system, we are left with two 240-point occupancy series.

These represent a picture of the system’s stations’ average occupancy in each

6-minute bin over the course of a 24-hour day. We now present graphs of these

series. On the x-axis is the hour of day, and on the y-axis is the average occupancy

of the city’s stations. The red line depicts the series for weekends, and the blue

line depicts weekdays. We present the systems in increasing order of size.

It is important to bear in mind that occupancy, or “fullness of stations”, is to be

interpreted as the inverse of usage. Occupancy is low when few bikes remain in

the stations, indicating that the bikes are being highly used. Conversely, occu-

pancy is high when many bikes are idle in stations, indicating that the bikes are

not being used as much. A negative slope in the occupancy series corresponds to

increasing usage, and a positive slope corresponds to decreasing usage.
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Figure 2.1: Joao Pessoa occupancy series.

We begin with Joao Pessoa (Fig. 2.1), capital of the Brazilian state of Paraiba,

and our smallest system with only 4 stations. In both series there is a drop in

occupancy (increase in usage) at around 7:30AM. Occupancies gradually increase
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until a peak in the afternoon, which occurs at 5:00PM on weekdays and 3:00PM

on weekends, after which occupancies start declining again. The difference in

weekend and weekday behaviour clearly corresponds to typical hours of work.
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Figure 2.2: Girona occupancy series.

The second of our studied systems is Girona, a city in the northeast of Catalonia,

Spain (Fig. 2.2), with 10 stations. The system is more heavily used on weekends

than it is on weekdays. Usage is particularly low during weekday mornings, and

particularly high on weekend evenings.
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Figure 2.3: Taipei occupancy series.

The third is Taipei, capital of Taiwan (Fig. 2.3), also with 10 stations. The sharp

usage spikes around 8:00AM and 7:00PM on weekdays reflect the work culture of

Taiwan; these spikes are completely absent on weekends.
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Figure 2.4: Siracusa occupancy series.

The fourth is Siracusa (Syracuse, Italy) (Fig. 2.4), with 18 stations. Morning

usage us much higher on weekends than on weekdays. The odd jump in the

weekday series at 1:00AM is most likely attributable to a redistribution scheme.
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Figure 2.5: Rio de Janeiro occupancy series.

The fifth is Rio de Janeiro, Brazil (Fig. 2.5), with 22 stations. While we do ob-

serve hours-of-work related “peaks” in usage, it is important to note that the scale

of the y-axis is very small in comparison to the other systems, making the lines

essentially flat. The weekday and weekend patterns are almost identical. Rio’s

stations appear to spend most of their time at near-empty states. We confirm

this by analysing the stations’ occupancy distributions in §3.4.
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Figure 2.6: Rome occupancy series.

The sixth is Rome, capital of Italy, (Fig. 2.6), with 30 stations. The usage pat-

terns are unusual and distinctively flat, with higher usage on weekdays.
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Figure 2.7: Miami occupancy series.

The seventh is Miami (Florida, U.S.A.) (Fig. 2.7), with 50 stations. The two

series are more or less coincident except for a higher weekend afternoon usage.
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Figure 2.8: Denver occupancy series.

The eighth is Denver (Colorado, U.S.A) (Fig. 2.8), with 53 stations. Like Miami,

the weekday and weekend series are nearly coincident, with the exception of a

high 3:00pm peak in usage on weekends. Neither Miami nor Denver exhibit any

increase in usage in the mornings, as many other systems do, indicating that the

users of the American systems are not using the bikes to commute between their

work and home environments.
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Figure 2.9: London occupancy series.

The ninth is London, capital of the United Kingdom (Fig. 2.9), with 390 sta-

tions. London exhibits a very clear difference in weekend and weekday usage. On

weekdays, system usage is driven by the hours of work, causing spikes at around

9:00AM and 7:00PM. On weekends, usage is more casual, with a gentle increase

in usage and a single peaking at around 5:00PM.
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Figure 2.10: Barcelona occupancy series.

The tenth and final city is Barcelona, Spain (Fig. 2.10), with 409 stations.

Barcelona’s usage patterns also differ starkly between weekdays and weekends.

On weekdays, we observe workday-driven peaks at 9:00AM and 7:00PM, and us-

age remains high throughout the workday. The system is less used on weekends,

but a small interruption to the otherwise steady upwards trend in usage is ob-

served at around 4:00PM, corresponding to the siesta culture of Spain.

General observations

We observe, with the exception of Rio de Janeiro, a clear dissimilarity between

each system’s weekend series and its weekday series. This observation the basis

for our subsequent decision to keep them separate, and to focus on weekdays

alone for our clustering and time series forecasting studies in Chapters 3 and 4.

Peaks in weekday usage corresponding to the start and end of typical hours of

work were observed in the large European and Asian systems, clearly demon-

strated in Taipei, London and Barcelona. The smaller systems (and Miami and

Denver) did not demonstrate this, which suggests that casual use makes up the

majority of their use cases.
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Chapter 3

Identifying Naturally-Occurring

Station Clusters

Given unlimited resources, each station would be given individual care by the ad-

ministrative authority. Its usage would be analysed on a daily basis, in the context

of street traffic, footfall, and nearby attractions and transport hubs. Custom de-

cisions regarding its expansion, contraction, relocation, and status in the bicycle

redistribution schemes are made on a per-station basis.

In practice, however, it is infeasible to devote this level of attention to individual

stations, especially in larger systems consisting of hundreds of stations. Moreover,

a highly station-specific administration methodology has little value to designers

of new systems and generates little transferable administrative experience.

It would be more useful think of stations as belonging to behavioural categories.

In this more realistic scenario, decisions may not be tailored to specific stations.

However, if some stations really did behave much like each other, making decisions

based on the activity of the group as a whole could achieve similar effects for a

fraction of the administrative effort.

In this chapter, we investigate whether stations were organised into general groups

according to their behaviour. We defined three notions of “behaviour” and de-

veloped unsupervised clustering methods for each:
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1. Daily flux in station occupancy: the rise and fall in a station’s occu-

pancy over the course of a day.

2. Station activity level: the approximate number of daily borrow/return

events at a station, expressed as a fraction of its capacity.

3. Occupancy distribution: the probability distribution of a station’s ob-

served occupancies. That is, the percentage of the time a particular station

spends at a various levels of fullness.

Since we found that station usage patterns are markedly different on weekdays

and weekends, we restricted the scope of this investigation to weekdays only.

We clustered all stations across the global dataset, not within each system sepa-

rately. We discovered naturally-occurring behavioural classes for stations across

all systems under investigation. In this chapter, we reveal that certain behavioural

classes are system-independent, and that there is, in fact, significant transferable

knowledge between stations and between systems. We first describe our general

approach to the unsupervised clustering problem in §3.1. We then describe our

specific methods and discuss our analytical results for each of the three notions

of behaviour in §3.2, §3.3, and §3.4 respectively.

3.1 Clustering methodology

We employed hierarchical clustering, also known as dendrogram clustering [12],

using an agglomerative strategy. In this bottom-up approach, each bicycle station

(or rather, its vector representation) is initialised as a singleton cluster. In each

iteration of the algorithm, the distance between every pair of clusters is computed,

and the two clusters which have the smallest distance (highest similarity) between

them are merged into a single cluster containing the stations from both. Thus in

each iteration the total number of clusters decreases by one. This procedure can

be repeated until only a single cluster remains. Our method for deciding when

to stop iterating (i.e. determining the number of clusters) is described in §3.1.1.

The vector representation of the bicycle stations was different for each of our

notions of station behaviour. For example, we used a 240-point averaged mean-
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normalised occupancy series as the vector representation of a station’s “daily flux

in station activity”, whereas we used a 10-bin discrete probability distribution as

the vector representation of a station’s “occupancy distribution”. Details of how

we produced these representations follows in §3.2, §3.3, and §3.4. Consequently,

for each of our three notions of station behaviour, we developed a separate metric

for computing the distance between any two station vectors.

This “inter-station” distance metric alone does not suffice for computing the

distance between any two clusters of stations. We also require a criterion for

determining the distance between entire clusters, i.e. an “inter-cluster” distance

metric. This is usually referred to as the linkage criterion. For instance, the

linkage criterion might be that the maximum pairwise distance between any two

stations belonging to either cluster is the distance between the two clusters1.

For our linkage criterion, we used centroid linkage, also known as unweighted pair-

group method using centroids (UPGMC) [13]. In this scheme, the vectors for all

stations within each cluster are merged to produce a “centroid”. This centroid

vector represents a station possessing the “average” behaviour of that cluster of

stations. Then, the distance between any two clusters is the station-pairwise

distance between the centroids of the two clusters.

For each of our three notions of station behaviour, we therefore specify both a

inter-station distance metric as well as a method for generating the centroid of a

cluster of stations. We provide these specifications in detail as we encounter each

notion of behaviour §3.2, §3.3, and §3.4 respectively.

3.1.1 Determining k, the number of clusters

The hierarchical clustering algorithm is not intrinsically capable of determining

when to stop clustering. Rather, the choice of where to stop2, and consequently

the number of resultant clusters (popularly denoted k), is left to us. The choice

of k is often guided by intuition, based on what level of clustering yields the most

valuable analytical insight. Automating the choice of an optimal k is the subject

1Also known as “maximum” or “complete-linkage” clustering.
2Also referred to as “cutting the dendrogram”, as the hierarchical clustering algorithm cre-

ates a tree, or dendrogram, of possible clusterings, and stopping the iteration “cuts” the tree.
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of much research, and several complex heuristics have been proposed, such as the

weighted gap statistic [14].

We use a simple heuristic based on incremental merge distances that approximates

the L-method proposed by Salvador and Chan [15]. When initialised with n

objects, the algorithm begins with n separate singleton clusters and ends with

a single cluster containing n items, with k decreasing by one at each iteration.

Thus there are n− 1 iterations, and at the end of the ith iteration, k = n− i.

Recall that in the ith iteration, the distance di between the two clusters which

are selected to be merged is the minimum pairwise distance between any two

cluster centroids in that iteration. We record di for 1 ≤ i ≤ n− 1. This series is

differenced to yield a series ∆i = di− di−1 for 2 ≤ i ≤ n− 1. The series ∆i is the

incremental merge distance: how much further apart the two closest clusters in

the ith iteration are than the two closest clusters in the previous iteration.
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Figure 3.1: Incremental merge distances for final 60 iterations of clustering.

Consider Figure 3.1, which depicts ∆i as a function of k for the final 60 iterations

of one of our clustering studies. The spikes at k =2, 4, 7, 12 and 17 indicate

unusual jumps in merge distances, suggesting that clusters which perhaps ought to

stay separate are being lost. Specifically, Figure 3.1 suggests that some candidates

for k are: 3, 5, 8, 13 and 18. We were able to decide on an optimal k for all our

clustering cases using a combination of the ∆i heuristic and manual tuning.
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3.2 Daily flux in station occupancy

Our first notion of station behaviour relates to its occupancy pattern over the

course of an average day. If we are able to detect naturally-occurring classes

of this type of behaviour, the geospatial layout of the station types would be

immediately useful for the planning of routes for bicycle redistribution schemes.

For instance, consider the situation where the entire East half of a system con-

sistently loses bikes throughout the morning, and the West half gains bikes at

that time, and in the evening this behaviour is reversed. Given this analysis, it

is simple to conclude that redistribution vehicles should travel in predominantly

Eastbound routes in the morning, and Westbound routes in the evening.

In this section we describe in detail a robust methodology for carrying out such

analysis. We present the global behavioural clusters that emerge in our dataset.

3.2.1 Creating a station’s vector representation

Recall that occupancy is defined as the fraction of a station’s total slots currently

occupied by bicycles. As with the preliminary analysis, we created a 240-point

occupancy series for each station by dividing each 24-hour day into 240 6-minute

bins and averaging observations within each bin. The averaged observations,

tuples of the form (bi, vi), are then expressed as occupancies; oi = bi
bi+vi

.

In the preliminary analysis of each system’s global properties, we then aggregated

this occupancy series by averaging it across all stations in a system. We do not

do that here, as we want to retain a unique vector representing each station.

In a departure from the work of Lathia et al., which proceeded immediately to

clustering on these series, we then normalised the series by subtracting its mean

from each element; o′i = oi− 1
240

∑240
i=1 oi. We perform mean-normalisation because

we want to cluster together stations with the same rise and fall in occupancy;

those which have bicycles borrowed and returned at similar times of day, regard-

less of what mean that rise and fall rotates around.
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To elaborate, consider the three stations in Table 3.1 with the following occu-

pancy series, truncated so that only 5 points in the time series are shown. The

occupancies are not mean-normalised.

Station Bin 1 Bin 2 Bin 3 Bin 4 Bin 5
A 0.5 0.6 0.7 0.6 0.5
B 0.6 0.6 0.6 0.6 0.6
C 0.1 0.2 0.3 0.2 0.1

Table 3.1: Example truncated occupancy series for three stations.

A simple distance metric might compute the distance between two stations as the

sum of the absolute differences between the occupancy values of individual bins.

For instance, the distance between A and B would be |0.5− 0.6| + |0.6− 0.6| +
|0.7− 0.6|+ |0.6− 0.6|+ |0.5− 0.6| = 0.3. Similarly, the distance between A and

C by this metric is 2.0. The clustering algorithm would therefore determine that

A and B are much more similar to each other than A is to C, since the distance

between them is much smaller.

However, closer inspection reveals that A and C are in fact more similar to

each other in terms of their usage patterns. While B remains static, A and C

exhibit occupancy rises of equal magnitude, peaking at bin 3, and then exhibit

falls in occupancy of equal magnitude. Mean-normalisation makes this similarity

transparent to our simple distance metric. The mean-normalised occupancy series

for the same stations are presented in Table 3.2.

Station Bin 1 Bin 2 Bin 3 Bin 4 Bin 5
A -0.08 0.02 0.12 0.02 0.58
B 0.00 0.00 0.00 0.00 0.00
C -0.08 0.02 0.12 0.02 0.58

Table 3.2: Example truncated mean-normalised occupancy series.

After mean-normalisation, it is much clearer that in fact A and C are identical.

Their new distance as given by our simple distance metric is 0. The clustering

algorithm will now prefer to group them together, which is the result we desired.

While the distance metric we actually use (subsequently described in greater

detail) is slightly more complex than the simple one used to illustrate our example,

it is still subject to the same benefits of mean-normalisation.
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Consequently, for each station, we are left with a 240-point series representing

the station’s average occupancy (with respect to its mean occupancy) in each

6-minute bin over the course of a 24-hour day. Since we are more concerned with

the changes in levels of occupancy rather than the absolute values of occupancy,

we refer to this as the occupancy flux series.

To calculate the centroid series c of a cluster of stations S, we simply average the

series of all stations in the cluster:

ci =

∑
s∈S

si

|S|
1 ≤ i ≤ 240 (3.1)

In practice, whenever two clusters were merged, instead of recalculating this

average over all stations in the new cluster, we calculated the centroid of the

resultant cluster by performing a weighted average of the two constituent cluster

centroids. The resultant centroid is numerically identical to the one produced

using the formula above.

3.2.2 Dynamic time warping: a flexible distance metric

In §3.2.1 we described a simple distance metric for two occupancy flux series,

namely distance(s, s′) =
∑

i |si− s′i|. In its current form, this does not suffice for

our purposes. This is because slight temporal distortions in the series are unduly

penalised. Consider the case where one series is identical to another, lagged by

one step. That is, s′i = si−1 for i > 1. Our simple distance metric penalises this

difference heavily because it only compares corresponding elements in both series.

To account for this, we used a distance metric based on the dynamic time warping

(DTW) algorithm [16]. This is a well-known technique for finding the optimal

alignment of two temporal sequences. It allows for the insertion of arbitrary gaps

in either of the two sequences to minimise the distance between them.

Since we wanted to allow for slight temporal distortions but not arbitrarily large

ones, we constrained the algorithm using a 1-hour Sakoe-Chiba band [17] in a

manner consistent with Froehlich et al., 2009. Therefore our final DTW imple-

mentation allows segments of the series to fall out of synchronisation by as much
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as one hour before incurring a heavy distance penalty. The dynamic time warping

algorithm also uses an atomic distance metric3 to compute the distance between

any two occupancies. For this we used absolute difference: cost(o, o′) = |o− o′|.

3.2.3 Naturally-occurring occupancy flux clusters

Using this distance metric, the hierarchical clustering methodology described in

§3.1, and the heuristic for choosing the number of clusters described in §3.1.1, we

produced 4 clusters (Fig. 3.2) from stations across all systems.
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Figure 3.2: Cross-city mean-normalised occupancy cluster centroids at k = 4. On
the x-axis: hour of day. On the y-axis: difference in occupancy from the mean.

3known as the cost function
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There are 3 major clusters and one minor cluster. Of the 3 major clusters, the

first, consisting of 212 stations, exhibits a sharp rise in mean-normalised occu-

pancy starting at approximately 8:00AM. Occupancy peaks at around 11:00AM,

then starts to decline until around 3:00PM, when the decline slows temporar-

ily. The decline resumes at around 5:30PM and continues until approximately

9:00PM. Stations in this cluster start the day relatively empty, then are rapidly

filled up in the morning, and slowly re-emptied over the course of the day. These

stations can be considered “morning sink, daytime source” stations, as they act

as bicycle sinks in the morning and as bicycle reservoirs during the day.

The second major cluster consists of 349 stations, and is an almost perfect inverse

of the first cluster. Stations in this cluster start the day relatively full, then are

rapidly emptied in the morning, and slowly re-filled over the course of the day.

These stations can be considered “morning source, daytime sink” stations, as

they act as bicycle reservoirs in the morning, and are a sink for bicycles over the

course of the day.

The final major cluster consists of 434 stations. Stations in this cluster do not

vary significantly in their levels of occupancy over the course of the day. This

cluster does exhibit a slight increase in occupancy in the morning and a decrease

in the late evening, but when compared to the magnitude of fluctuation in the

other clusters, the mean-normalised occupancy of this cluster is essentially a flat

line. These stations act neither as reservoirs nor sinks, but rather act equally as

both. It is important to note that from a flat mean-normalised occupancy series,

one cannot conclude that these stations are not very active, although that is one

possible explanation. At most, one can conclude that the stations have roughly

equal rates of bicycle inflow and outflow. Clustering on activity level requires a

different treatment altogether, which we explore in §3.3.

We label the fourth cluster “minor” as it only contains a single station. The

station in question lies in the heart of Barcelona and has a highly distinctive

occupancy series. Judging by the fact that its occupancy starts climbing after

midnight and peaks at 9:00AM, after which its occupancy rapidly drops, it is

either close to a number of night-time attractions or it is being used as a depot

for the redistribution scheme.
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3.2.4 Mapping occupancy flux clusters

In this section we present map visualisations of the four flux clusters across our

ten cities. We use a small red circular marker to denote a station belonging to

cluster one, a blue marker for cluster two, a green marker for cluster three and a

yellow marker for cluster four.

Figure 3.3 shows these clusters for the six smaller systems. We immediately

note that these systems are homogeneous: all the stations in each system belong

to the same cluster, namely the third cluster with the “flat” occupancy series.

This implies that all stations in small systems behave similarly to each other. It

is likely that because the supply of stations stations is so constrained in these

systems, demand for bicycles and vacancies is distributed more evenly, leading to

the flat occupancy line.

We focus on London and Barcelona in Figure 3.5, where the heterogeneity of

station behaviour is clearly visible. It seems that this diversification is only

possible when there are enough stations that spatial demand for bicycles and

vacancies is free to manifest without hitting supply ceilings. London’s clusters

look like concentric circles, with cluster one (morning sink) stations at the centre,

surrounded by successive layers of cluster three and cluster two (morning source)

stations. This reflects a morning surge of bicycles from outside the centre moving

inwards, and a slow outwards flow over the course of the day. This suggests that

bicycle redistribution vehicles should move outwards in the morning to counteract

the morning surge, preventing depletion of the stations in the outermost cluster

and the saturation of stations in the centre.

Similarly, Barcelona’s morning sink stations run through the city centre and

spread out along the coast, and the morning source stations are spread out over

the rest of the city. This map corresponds well with Barcelona’s elevation; it is in

a hilly region and the placement of the “sink” stations corresponds to lower ele-

vations, while the “source” stations are at higher elevations, a consequence of the

natural tendency of users to prefer riding downhill rather than uphill. Barcelona’s

map visualisation suggests that redistribution vehicles should move outwards in

the morning, and slowly back inwards during the day.
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Taipei Girona

Rio de Janeiro Rome

Figure 3.3: Cross-city flux clustering: maps. Cluster 1 in red, cluster 2 in blue,
cluster 3 in green, and cluster 4 in yellow.
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Miami Denver

London Barcelona

Figure 3.4: Cross-city flux clustering: maps (continued). Cluster 1 in red, cluster
2 in blue, cluster 3 in green, and cluster 4 in yellow.
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Figure 3.5: Cross-city flux clustering: a closer look at the maps of London (above)
and Barcelona (below). Cluster 1 in red, cluster 2 in blue, cluster 3 in green, and
cluster 4 in yellow.
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3.3 Station activity level

Next, we performed clustering by how active the stations are in terms of their

approximate daily borrow/return events. Detecting natural classes for this notion

of behaviour would also be immediately useful. By mapping these classes, we can

detect neighbourhoods of “stressed” stations; those which have unusually high

levels of activity, suggesting their expansion or augmentation by the introduction

of new stations in the vicinity to better balance the load. Conversely, we would

also be able to detect neighbourhoods of underutilised stations, suggesting that

closing down one or more stations in that vicinity would reduce operating costs

without a large penalty on the system load or perceived quality of service.

In this section we describe a methodology for carrying out such analysis, and

present the global behavioural clusters that emerge in our dataset.

3.3.1 Calculating a station’s activity level

Our measure for a station’s activity level is considerably simpler than the vec-

tor representation we used for its occupancy flux. We refer to the measure as

a station’s “delta”. It is a single number generated by summing the absolute

differences between every consecutive pair of points in its occupancy series o:

delta(o) =
∑

1<i≤240

|oi − oi−1| (3.2)

This number represents a notion of “churn”, or “turnover”. For example, if a

station’s occupancy series delta is 3, then over the course of the day it has seen

approximately and no less than 3 times as many borrow+return events as its

capacity. Similarly, a station with an occupancy series delta of 0.5 sees approxi-

mately and no less than half its capacity in borrow+return events.

We cannot be exact because the series consists of averaged occupancy values

within 6-minute windows, and so we only account for activity that occurs between

one window and the next, losing any activity that has occurred over the course of

the window. For example, consider this 2-minute sampled series of occupancies:

[0.5, 0.6, 0.4, 0.5, 0.5, 0.5]. That is, at some timepoint t the sampled occupancy
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at a station was 0.5, at t + 2 minutes it was 0.6, etc. This series becomes the

6-minute averaged series [0.5, 0.5]. From the 6-minute series, it appears that

there is no activity at the station from one sample to the next, but as is evident

from the 2-minute series, this is not an accurate conclusion.

It is worth noting that even if we had used the samples at 2-minute intervals, some

level of activity would still have been lost. If we observe b bikes at timepoint t,

and b bikes at timepoint t+ 2 minutes as well, it is indeterminable whether there

was no activity at the station, or whether there was an equal number of borrowed

and returned bicycles during the interval between the two observations. The only

way to guarantee that no such activity loss is incurred is to continuously sample

station statuses, which is clearly infeasible, or by having access to the rental logs

of the transport authorities, which are currently not in the public domain. In

practice, however, borrow/return events at most stations are sparse enough that

the 6-minute series deltas are usable approximations for activity level.

To calculate the centroid deltac of a cluster of stations S, we simply averaged the

deltas of all stations in the cluster:

deltac =

∑
s∈S delta(s)

|S|
(3.3)

Absolute difference was used for inter-station distance.

By clustering stations on the basis of their occupancy series delta, we identified

groups of stations which have similar levels of activity with respect to their ca-

pacity; those which have similar proportions of bicycles borrowed and returned

over the course of the day.
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3.3.2 Naturally-occurring delta clusters

Using the clustering methodology from §3.1 and the heuristic for choosing the

number of clusters described in §3.1.1, we produced 6 clusters (Table 3.3) from

stations across all systems.

Cluster n deltac
1 824 0.224
2 31 0.884
3 134 0.512
4 5 1.470
5 1 3.323
6 1 3.047

Table 3.3: Series delta: final clusters.

There are 3 major clusters and 3 minor clusters. The first and largest cluster

contains the majority of stations, 824. The value of deltac for the centroid of

this cluster is 0.224, or approximately 20%. Stations in this cluster see approx-

imately 20% of their total capacity in bike borrowing and returning events over

the course of a typical day. So a bike station in this cluster with a capacity of 10

experiences approximately 2 daily borrow+return events on average. A station

with a capacity of 40 experiences approximately 8 borrow+return events, etc.

The 824 stations in the first cluster, the vast majority under study, are arguably

underutilised with respect to their capacity. This may be for reasons unique to

each station: there may be a demand for the station to be a source, but it cannot

act as one because it runs out of bikes too quickly; there may be a demand for it

to be a sink, but it cannot be because it runs out of vacancies easily; or it may

simply be too far away from anything of interest to be actually useful.

The second major cluster contains 31 stations and has a centroid deltac of 0.884,

or ∼90%. By our measure, this is the most “active” of the three major clusters.

A station in this cluster with a capacity of 10 sees around 9 daily borrow+return

events. These stations are well-utilised with respect to their capacity.
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The third major cluster contains 134 stations and has a centroid deltac of 0.512,

or approximately 50%. These stations can also be said to be well-utilised with

respect to their capacity. While these stations are not as active as those in the

second cluster, they are likely to cope better with sudden bursts in activity. A

station that is almost perfectly utilised may become completely unused if a sudden

activity spike causes a severe supply/demand mismatch.

The fourth, fifth and sixth clusters are minor clusters containing 5, 1 and 1

station(s) respectively. Their values of deltac for their respective centroids are

1.470, 3.323, and 3.047, or approximately 150%, 330% and 300%. A station in the

sixth cluster with a capacity of 10 sees approximately 30 borrow+return events

daily. These stations are clearly being very well utilised. However, the extreme

levels of activity at these stations may be stressing the stations’ facilities, leading

to increased maintenance and repair costs. Stations with extreme levels of activity

occur where demand is high throughout the day, and supply and demand are

consistently well matched for both bikes as well as vacant slots. These stations

may not necessarily cope well with sudden changes in activity pattern, suggesting

that auxiliary stations should be built nearby to balance the load.

Our analysis shows that globally, the vast majority of stations belong to the

first cluster, and are arguably underutilised (or oversized). A large number of

stations belong to the second and third clusters, which appear to hit an activity

level “sweet-spot”. In future work, it would be useful to study the properties

of stations in the well-utilised clusters so that attempts can be made to move a

larger proportion of the world’s stations into those clusters.

3.3.3 Mapping delta clusters

Map visualisations of the four flux clusters across our ten cities are presented in

Figures 3.6 and 3.7. As with the flux series clustering, all of the small systems

are homogeneous and are similar to each other. In fact, the only system that

displays considerable heterogeneity is Barcelona, which is composed primarily of

stations from cluster one and three.
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Figure 3.6: Cross-city delta clustering: maps. Cluster 1 in red, cluster 2 in green,
cluster 3 in blue, cluster 4 in brown, cluster 5 in grey, cluster 6 in white.
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Figure 3.7: Cross-city delta clustering: London (above) and Barcelona (below).
Cluster 1 in red, cluster 2 in green, cluster 3 in blue, cluster 4 in brown, cluster
5 in grey, cluster 6 in white.
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3.4 Occupancy distribution

Finally, we performed clustering on the distribution of occupancies observed for

each station. By clustering stations on the basis of their occupancy distributions,

we attempted to discover those groups of stations which spend similar amounts

of time at similar levels of fullness.

The detection of natural classes of this type of behaviour would be immediately

useful for optimising station sizes as well as planning redistribution vehicle routes.

For instance, stations that spend almost all their time completely full are candi-

dates for expansion by the inclusion of new docking points. Conversely, stations

that spend almost all their time completely empty are candidates for downsizing.

In this section we describe a robust methodology for carrying out such analysis.

We present the global behavioural clusters that emerge from our dataset.

3.4.1 Calculating a station’s occupancy distribution

For each station, we discretised the occupancy for each observation into deciles.

We then counted the observations in each decile and expressed these counts as

percentages of the total number of observations, producing a 10-bin histogram

representing the occupancy distribution for that station.

To calculate the centroid distribution of a cluster of stations, we simply average

the distributions of all stations in the cluster. As with the normalised occupancy

series, in practice, we obtained the centroid of the cluster resulting from a merge

by calculating a weighted average of the two constituent cluster centroids.

3.4.2 The Hellinger distribution distance metric

The station-pairwise distance between two distributions is calculated by the

Hellinger distance [18]. For two discrete probability distributions P = (p1, ..., pk)

and Q = (q1, ..., qk), the Hellinger distance H(P,Q) between them is defined as:
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H(P,Q) =
1√
2

√√√√ k∑
i=1

(
√
pi −
√
qi)2 (3.4)

This can be rewritten using the Bhattacharya coefficient [19] of P and Q:

H(P,Q) =
√

1−BC(P,Q) (3.5)

where

BC(P,Q) =
k∑

i=1

√
piqi (3.6)

Hellinger distance expressed in terms of the Bhattacharya coefficient has pre-

viously been found effective for measuring the divergence between two discrete

distributions [20]. It is important to note that while we use the Bhattacharya

coefficient to calculate Hellinger distance, the resultant distance metric is quite

different4 from the Bhattacharya distance metric, B(P,Q) = −ln(BC(P,Q)).

3.4.3 Naturally-occurring occupancy distribution clusters

Using this distance metric, the hierarchical clustering methodology described in

§3.1, and the heuristic for choosing the number of clusters described in §3.1.1, we

produced 10 clusters from stations across all systems.

The occupancy distributions for the centroids of the five largest clusters are pre-

sented in Figure 3.8. The first large cluster contains the overwhelming majority

of stations (734). The occupancy distribution of this cluster shows a low, similar

probability of being in any level of occupancy. Thus most stations spend small

and roughly equal amounts of time at many levels of fullness. This is not nec-

essarily desirable, as a station should ideally spend the most time at a level of

occupancy proportional to the demand for bikes and vacancies at that station.

4Most notably, the Bhattacharya distance does not obey the triangle inequality, whereas
Hellinger distance does [21].
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Figure 3.8: Cross-city distribution clustering: five largest centroids at k = 10. On
the x-axes is the occupancy decile. On the y-axes is the probability of a station
in that cluster being at that level of occupancy.
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The second large cluster contains 113 stations. Stations in this cluster spend most

of their time being 30-60% full. These stations might appear to be underutilised

in comparison to those in the first cluster, but on the other hand they are also

more resilient to sudden changes in demand, as they always have some bikes and

vacancies available. Similarly, the 54 stations in the third large cluster are usually

between 40% and 80% full, the 23 stations in cluster 4 are between 20% and 40%

full, and are also likely to be resilient to sudden changes in demand.

The final large cluster contains 38 stations, and spends most of its time at 0-

20% occupancy. These stations are usually near-empty, suggesting that they are

more used as sources of bicycles rather than sinks, and would benefit from being

reprioritised in the redistribution schemes so that there are more bikes present.

The occupancy distributions for the centroids of the five smaller clusters are

presented in Figure 3.10. These clusters have low membership but exhibit quite

interesting behaviour. The occupancy distributions in each of these minor clusters

are very narrow. That is to say, bikes in these clusters seem to spend most of

their time at a very specific level of occupancy. For instance, stations in cluster

6 spend the overwhelming majority of their time between 10% and 20% full.

Stations in cluster 10 spend almost all their time between 40% and 50% full.

This occurs when the demand for bikes and vacancies at a station are equal,

resulting in similar rates of borrowing and returning events. As a consequence,

the occupancy level of the station remains relatively stable.

Stations in cluster 7 suffer from the opposite problem to those in cluster 5; they

are too full, spending most of their time at 80-100% occupancy. They would also

benefit from being reprioritised in bicycle redistribution schemes so that bicycles

are periodically removed to address the demand for vacancies.
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Figure 3.9: Cross-city distribution clustering: five smaller centroids at k = 10.
On the x-axes is the occupancy decile. On the y-axes is the probability of a
station in that cluster being at that level of occupancy.
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3.4.4 Mapping occupancy distribution clusters

In this section we present map visualisations of the ten distribution clusters across

our ten cities. We use the colour-coded markers as listed in Table 3.4.

Cluster Marker
1 Small white
2 Small green
3 Small blue
4 Small red
5 Small brown

6 Large purple
7 Large orange
8 Large green
9 Large red
10 Large white

Table 3.4: Distribution cluster map legend.

The maps of our six smaller systems are presented in Figure 3.10, and for Miami

and Denver in Figure 3.11. Our first observation is that the diversification be-

haviour (heterogeneity) of systems is the complete inverse of our flux clustering

study in §3.2. That is to say, the smaller systems display greater heterogeneity

in types of station, whereas the larger systems are more homogeneous.

Rio de Janeiro is composed primarily of cluster five stations; those which spend

almost all their time in 0-10% occupancy. It seems that there are very few bicycles

in circulation in this system, or that station capacities are much larger than

necessary. Girona is composed primarily of cluster two and cluster one stations,

which have well-distributed occupancies, suggesting that station sizes and bike

circulation are well-planned. Similarly, Miami and Denver also primarily contain

stations from clusters with occupancy distributions that lie far from the extremes.

The maps for London and Barcelona are presented in Figure 3.12. Both these

cities display great homogeneity, with most of the stations belonging to cluster

one, suggesting that most station sizes are within their ideal bounds.
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Taipei Girona Joao Pessoa

Rio de Janeiro Siracusa
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Figure 3.10: Cross-city distribution clustering maps. Small white: cluster 1.
Small green: cluster 2. Small blue: cluster 3. Small red: cluster 4. Small brown:
cluster 5. Large purple: cluster 6. Large orange: cluster 7. Large green: cluster
8. Large red: cluster 9. Large white: cluster 10.
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Figure 3.11: Distribution clustering: Miami (above) and Denver (below).
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Figure 3.12: Distribution clustering: London (above) and Barcelona (below).
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Chapter 4

Forecasting Utilisation

The behavioural clustering analysis in Chapter 3 was conducted on the basis of a

temporally static representation of a bicycle station. This would help designers

and administrators make decisions to improve various aspects of the system on

a long-term basis, such as the addition or removal of bike stations. If stations

were instead represented as functions of sliding windows of their activity history, it

might be possible to discover new behavioural clusters that appear and disappear

over time. This was beyond the scope of the project, but is worthy of future study.

Moreover, a short-term forecast of the utilisation of a station would allow for

dynamic, adaptive decision making. For instance, a large event organised in a

remote area of the city may cause an unusual load in the stations in the vicinity

of the venue. If that sudden heavy load was predicted a half-hour ahead, bike

sharing administrators would be able to trigger a preemptive early redistribution

to ensure quality of service. The forecast would also be immediately useful for

users of the system, who would be able to choose their origin and destination

stations on the basis of the future availability of bicycles and docking points.

In this chapter, we describe our investigation into predicting (or forecasting) the

number of bicycles at a given station at fixed intervals in the future, given only the

known history of activity at that station. We did not attempt to use the activity

at other stations or external datasets such as weather or topography to improve

this forecast as it was out of scope, but this is suitable for further research.
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4.1 Problem formulation and testbed

The problem we tackled is simply that of modelling the number of bicycles at

a station as a univariate time series. Consistent with the clustering study, we

focused exclusively on weekdays. For each station, we considered 2 separate

series: the series of observations sampled every 2-minutes, and the same series

of observations as averaged, 6-minute samples. Unlike in the clustering analysis,

the series were not averaged across all days. Thus, for example, a 2 day series

at 2-minute samples contains 1440 observations. The same 2 days as a 6-minute

averaged series contains 480 observations.

For both series, forecasts were made at four horizons: 6, 12, 24 and 48 minutes

ahead. This geometric progression of horizons was chosen on the basis that each

is a reasonable window ahead for either the user or the system administrator to

be planning actions. Given the history of a station’s observations as 2-minute

samples, intervals of 6, 12, 24 and 48 minutes correspond to 3, 6, 12 and 24

samples respectively. Similarly, given a station’s history as a 6-minute averaged

series, the same intervals correspond to 1, 2, 4 and 8 samples respectively.

To test the predictive models, we used weekday data from weeks 11-19 (9 weeks)

of our dataset. In 9 weeks, there are 10800 (9 × 5 × 240) 6-minute intervals.

Excluding the first and final days, there are 10320 6-minute intervals. We chose

120 equispaced points at the edges of these intervals to be the points in time from

which to run forecasts. That is, we simulated the situation where each of these

points was the “present” state of the station, and allowed the predictive models

to speculate on the values of (b, v) at each forecast horizon. We then compared

the predictions against the actual values to evaluate them.

It was not an arbitrary decision to use 120 equispaced points. To evenly space

120 points across 10320 6-minute intervals, the points must be 86 intervals apart

from each other. The lowest common multiple of 86 and 240, which is the number

of 6-minute intervals in a 24-hour day, is 10320: the total number of points in

our 9-week span of test data. Consequently, the 120 timepoints we have chosen

do not repeat with respect to their position in the day. That is, at most one

timepoint is at 00:00, at most one is at 00:12, and so on. Each minute during the

day is represented by at most one time point in our test datasets.

60



At each of these 120 timepoints, we made 4 predictions for 2 series per station.

Since we are forecasting at 4 horizons for 2 series at 120 timepoints for each

station, we make a total of 960 predictions per station.

4.2 Prediction evaluation metrics

We forecast at 4 horizons for 2 series at 120 timepoints per station, making

960 predictions per station as described in §4.1. In this section we describe the

methodology used to evaluate these predictions.

As mentioned in Chapter 1, all previous work has only considered a single bicycle

sharing system, and within any one system the spread of station capacities is very

narrow. Consequently, mean error in predicted number of bicycles has sufficed as

a measure of predictor performance.

However, the stations across the 10 cities we are considering have a very diverse

range of capacities. In this case, the mean error in predicted number of bicycles

is not a reliable value on which to compare the predictability of different stations.

For example, a mean error of 2 bicycles in a station with a capacity of 4 bicycles

is indicative of poor prediction quality, but the same mean error of 2 bicycles in

a station with a capacity of 30 indicates arguably better predictions.

To account for this discrepancy in station sizes, we used error metrics based on

occupancy instead. For a series of n predicted observations of the form (bPi , v
P
i ),

and the corresponding series of ground truths (bTi , v
T
i ), where 1 ≤ i ≤ n, we

calculate error metrics as follows:

1. Mean absolute error (MAE) in predicted occupancy:

MAE =
1

n

n∑
i=1

∣∣∣∣ bPi
bPi + vPi

− bTi
bTi + vTi

∣∣∣∣ (4.1)

This metric simply presents the average absolute error across all predictions.
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2. Root-mean-square error (RMSE) in predicted occupancy:

RMSE =

√√√√√√ 1

n

n∑
i=1

(
bPi

bPi + vPi
− bTi
bTi + vTi

)2

(4.2)

This averages the squared errors across all the predictions, and then presents

its square root. As the errors are squared before they are averaged, larger er-

rors automatically incur higher penalties. Taken together, MAE and RMSE

can often help detect the presence of a small number of large errors.

3. Corrected sample standard deviation (SD) of error in predicted occupancy:

SD =

√√√√ 1

n− 1

n∑
i=1

∣∣∣∣( bPi
bPi + vPi

− bTi
bTi + vTi

)
−MAE

∣∣∣∣ (4.3)

Strictly speaking, this is not a measure of predictive accuracy. Rather, it is

a measure of predictive precision; models with low standard deviations in

error often just need to be offset in order to start producing better predic-

tions, whereas models with high standard deviations in error are unlikely

to produce better predictions with simple linear corrective measures.

All three metrics were used to tune the parameters of our models. We only present

RMSE performance towards the end of this chapter, for the sake of brevity and

to keep the discussion focused.

4.3 Predictive models

We built four kinds of models. The study conducted by Froehlich et al., 2009

experimented with linear regression and Bayesian networks. We expand upon

this using multilayer perceptrons and decision tree ensembles. Unfortunately, it

would be meaningless to compare our results with theirs because we use entirely

different datasets and entirely different evaluation strategies.
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4.3.1 Random and static models

Our baseline was a random model. For all horizons, this simply predicts a random

value drawn from the discrete uniform distribution ranging from 0 to the station

capacity. This serves as the benchmark against which other models are compared.

The second predictive model was a static model. This assumes that the time

series is horizontal, and predicts that the currently observed number of bikes will

persist for all horizons. That is, if there are currently b bikes at the station,

the static model will predict b bikes at all points in the future. As subsequently

demonstrated, this is not as unreasonable as it may first appear.

4.3.2 Multilayer perceptron

The third kind of model was a multilayer perceptron1. The multilayer perceptron

has previously been shown to be effective for univariate time-series forecasting

[22, 23]. We did not train a single network with output dimensions for each

forecast horizon. Instead, we trained 8 separate networks with a single output

dimension: one for each forecast horizon, for the 2-minute sampled series and the

6-minute averaged series.

We did not train the multilayer perceptrons to directly predict the number of

bicycles. Rather, they predict occupancy based on previous values of occupancy.

Neural network regression is more effective when the range of the input and output

dimensions correspond well to the sensitive range of the activation functions [24].

Occupancies fall in the range [0,1], corresponding better to the the sensitive range

of our chosen activation functions (linear and sigmoid)2.

1A specific kind of feedforward artificial neural network with multiple layers of interconnected
perceptrons, hence the name.

2Furthermore, this so-called “feature scaling” generally improves the speed of convergence
for the gradient descent used internally by the backpropagation algorithm classically employed
to train neural networks.
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Determining input vector length through autocorrelation study

For both the 2-minute and 6-minute series, we decided to use the 10 most recent

observations at the station as input features. Consequently, the predictors using

the 2-minute series extrapolate on 20 minutes of recent history, and when using

the 6-minute averaged series extrapolate on 60 minutes of recent history.

The decision to use a sliding window of only 10 samples is supported by the

partial autocorrelation functions of the cities’ averaged time series. For each bike

sharing system, all observations across all stations at each timestamp during the

day are averaged to yield an averaged pictures of a system’s daily occupancy as

in §2.4. Given measurements of occupancy o1, o2, ..., on at timepoints 1, 2, ..., n

respectively, the autocorrelation at lag k (ACFk) is given by:

ACFk =

n−k∑
i=1

(oi − ō)(oi+k − ō)

n∑
i=1

(oi − ō)2
(4.4)

where ō is the mean of the series. The autocorrelation is simply the ordinary

Pearson product-moment correlation of a time series with itself at a specified lag.

The partial autocorrelation at lag k (PACFk) is the autocorrelation that is not

accounted for by autocorrelations at shorter lags. To calculate PACFk, oi is first

regressed against oi−1, oi−2, ..., oi−(k−1). Then the correlation of the residuals of

this regression with oi−k is calculated. This is the autocorrelation which remains

at lag k after the effects of shorter lags (1, 2, ..., k − 1) have been removed by

regression. An efficient method for the calculation of PACFk is given by the

Durbin-Levinson algorithm [25,26], the discussion of which is out of scope.

Observation of the partial autocorrelation plots of these time series reveals, in

every system, a significant partial autocorrelation at lag 1, and no other signifi-

cant partial autocorrelations. As examples, plots of autocorrelation and partial

autocorrelation at various lags for the 2-minute and 6-minute occupancy series

for London and Barcelona are presented in Figure 4.1. It is clear, based on these

observations, that most of the useful predictive information in these time series

lies within a short sliding window, which we set at 10 samples.
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Figure 4.1: Plots of autocorrelation and truncated plots of partial ACFs for Lon-
don’s and Barcelona’s averaged 2-minute and 6-minute occupancy series. Signif-
icance thresholds are indicated by the dashed horizontal lines.
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Structure of resultant networks

Our neural networks, therefore, had 10 input dimensions (neurons) and a single

output neuron. We experimented with the following parameters: activation func-

tion of input layer (linear or sigmoid), number of hidden layers (0 or 1), number

of neurons in the hidden layer (0, 3, or 10), activation function of hidden layer

(linear or sigmoid), and activation function of output layer (linear, sigmoid, or

softmax). We did not investigate additional hidden layers or activation functions

as it was beyond scope, but it would be an interesting subject for future study.

The combination of parameters which consistently yielded lowest training error

for a subset of our testbed was as follows:

• an input layer of 10 neurons, each with a linear (or identity) activation

function: φI(x) = x

• a single hidden layer of 3 neurons, each with a sigmoid (logistic) activation

function: φS(x) = 1
1+e−x

• an output layer of 1 neuron with a linear activation function.

The model described by this network is visualised in Figure 4.2.

Improving training speed through resilient backpropagation

Training a neural network such as the one in Figure 4.2 involves weighting the

edges to minimise the prediction errors of the model over a training set. With

8 neural networks per station, we trained ∼8000 neural networks in total. This

would have been extremely slow using classic backpropagation. We employed

the resilient backpropagation heuristic [27, 28], also known as Rprop, a first-

order optimisation algorithm that uses just the sign of the derivative during

gradient descent instead of its magnitude. Resilient backpropagation is one of

the fastest known learning techniques for neural networks, along with the cascade

correlation [29] and Levenberg-Marquardt [30, 31] techniques. We trained each

network for 20 epochs or until convergence, whichever completed earlier.
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xi−9 φI(x)

Figure 4.2: A visualisation of the fully-connected multilayer perceptron used to
forecast station occupancy. φI is the identity function, also known as the linear
activation function. φS is a sigmoid function, specifically, the logistic function.
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4.3.3 Decision tree ensemble

Our fourth predictive model was an ensemble of decision trees with random fea-

ture selection and bootstrap aggregation, known colloquially as a random forest.

As with the multilayer perceptron, we trained 8 separate models per station,

corresponding to 4 horizons across 2 time series.

While our neural networks were trained exhaustively on all examples from our

training set (§4.4), each tree in the ensemble was built from a random subsample

drawn with replacement from the training set, that is to say, a bootstrap sample.

We tested the performance of ensembles containing 1, 5, 10, 25, 50, and 100

decision trees. Increasing the number of trees beyond 10 resulted in an extremely

small improvement in training error, at the cost of a heavy penalty in the time

taken to train the forest, so we set the number of trees in each ensemble to 10.

Each tree was built using a modified version of Quinlan’s C4.5 decision tree learn-

ing algorithm [32]. Normally, C4.5 splits nodes based on the feature (or attribute)

of the data that most effectively splits the training examples into subsets enriched

in particular classes. Formally, this is the normalised information gain criterion,

also known as Kullback-Leibler divergence [33]. Instead of choosing a feature to

split out of all available features, we chose a feature out of a random subsample

of the feature space. This randomness results in a slight increase in the bias of

the ensemble3. However, ensemble averaging lowers the variance enough to com-

pensate for the increase in bias. This yields a better model overall in comparison

to a single tree.

The original publication [34] prescribes a voting mechanism to combine the pre-

dictions from individual trees. While this approach is sensible for classification-

type problems, it is does not yield good results for regression problems. Our

implementation combined predictors by averaging their probabilistic prediction,

instead of letting each tree vote for a single value. Consequently, the predicted

regression output of an input vector is computed as the mean predicted regression

outputs of all the trees in the ensemble.

3with respect to the bias of a single non-random tree
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4.4 Training data

Given the high volatility of the stations’ time series, as evidenced by the partial

autocorrelation function plots, it does not seem useful to train the models on

vast portions of each station’s distant history. Furthermore, as we trained nearly

16,000 models in total (8 neural networks and 8 random forests each for 996

stations), using large amounts of training data would require impractical com-

putation time. Consequently, we decided to use a single week of training data.

Since the test data began from week 11 onwards, we used week 10.

This one week has a 2-minute sample series 3600 (=720×5) samples long. We gen-

erated training examples from this series with an incremental 10-sample sliding

window, yielding a maximum of 3566 (=3600-24-10) 10-feature training examples

which have data points up to 24 samples ahead.

Similarly, when the series is converted to a 6-minute averaged series, it is 1200

(=240×5) samples long. We generated training examples from this series with an

incremental 10-sample sliding window, yielding a maximum of 1182 (=1200-8-10)

10-feature training examples which have data points up to 8 samples ahead.

Therefore, each multilayer perceptron and decision tree ensemble was trained on

a maximum of 3566 training examples in the 2-minute series, and a maximum of

1182 training examples in the 6-minute averaged series.

4.5 Predictor performance by horizon

The prediction error of models at various horizons, averaged over all stations

for each system, are presented for the 2-minute series in Figure 4.3, and for the

6-minute series in Figure 4.4. We only present root-mean-square error for brevity.

All our models perform better than the random benchmark (dashed black), which

has an error between 20% and 30%. The decision tree ensemble (blue) consistently

outperforms the multilayer perceptron (red), and the static model (solid black)

performs best of all.
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In the smaller systems, with the exception of Girona, the prediction error gener-

ally remains stable as the forecast horizon is increased. That is, the models are

approximately as good at predicting occupancy levels 6 minutes in the future as

they are at predicting occupancy up to 48 minutes ahead.

This is not true of the larger systems, where predictor performance deteriorates as

the prediction window increases. This suggests that the borrow/return patterns

for stations in the smaller system are more consistent, and that the larger the sys-

tem gets, the more stochastic this pattern appears, at least from the perspective

of a univariate time series.

For the larger systems, prediction errors for the 2-minute series are almost iden-

tical to those of the 6-minute series. However, for the smaller systems, a variety

of differences is observed. In general, the performance of the static model is

unaffected, and the performance of the decision tree ensemble and multilayer

perceptrons are worse in the 6-minute series.

One explanation for this result is that patterns in a station’s occupancy are

straightforward in the 2-minute series, but have a periodicity that is lost when

averaging into 6-minute bins. For instance, consider the 2-minute occupancy

series [0.0, 0.1, 0.2, 0.3, 0.4, 0.3, 0.2, 0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.3, 0.2, ...]. This

series has a clearly observable triangular wave pattern. Taking the average of 3

elements at a time, we produce the 6-minute series [0.1, 0.33, 0.1, 0.2, 0.3, ...].

The pattern is completely destroyed as the periodicity of the original wave is not

a harmonic of our averaging window, making the series harder to forecast.

This explanation supports the idea that larger systems are more stochastic than

smaller ones. The performance of the predictors was unaffected by averaging for

the larger systems, but negatively impacted by averaging for the smaller systems,

suggesting that the models had been exploiting regular patterns in the smaller

systems which were then being thrown off by averaging.
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The simple static model performs better than the two sophisticated models, with

an error of 0-10% in most cases. We believe that this has a few reasons:

1. The vast majority of stations have very sparse activity. This is supported by

our activity clusters in §3.3, which showed that the largest cluster of stations

only had a 20% occupancy turnover during a typical day. Under these

circumstances, predicting no change is actually a good strategy because in

an underutilised station, if there are b bikes at a given point in time, it is

very likely that in 6 or 12 minutes there will still be b bikes.

2. Even the bike stations with moderate levels of activity usually experience

the bulk their activity concentrated at certain times of day. For instance,

our preliminary analysis in §2.4 showed that, with the exception of the

American systems, spikes in usage occur corresponding to hours of work;

people presumably use the bikes to commute to and from their workplace.

The rest of the day, the stations are much less active. Our evaluation

testbed gave equal representation to all times of day by design (§4.1), and

so the good predictions made by the static model in off-peak hours would

have compensated for its poor performance during peak hours.

3. Finally, the series themselves are only subject to incremental changes in

value. That is, except for occasional large changes in occupancy due to

redistribution vehicles, a single borrow/return event has only a very minor

effect on the value of occupancy. So even if the static predictor gets the

number of bikes wrong, it is likely to be only off by one or two.

The static model yields the most accurate predictions. Unfortunately, this result

is not useful for the simulation, emergent cluster discovery, and preemptive redis-

tribution purposes described in the introduction to this chapter. It is plausible

that the multilayer perceptron and decision tree ensemble models have enough

adaptability that they would be much better and more useful than the static

model in certain stations during certain periods of the day. We did not investi-

gate this, but it is the logical next step for future work.
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Figure 4.3: Predictor performance comparison for 2-minute series. Averaged
root-mean-square error in predicted occupancy on the y-axis. Forecast horizon,
in minutes, on the x-axis. Random model in dashed black, static model in black,
multilayer perceptron in red and decision tree ensemble in blue.
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Figure 4.4: Predictor performance comparison for 6-minute series. Averaged
root-mean-square error in predicted occupancy on the y-axis. Forecast horizon,
in minutes, on the x-axis. Random model in dashed black, static model in black,
multilayer perceptron in red and decision tree ensemble in blue.
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4.6 The effect of proximity to training data

We chose one week of training data (week 10 of the dataset) to train our multilayer

perceptron and decision tree ensemble models. We evaluated the models on 10

weeks of test data (weeks 11-19 of the dataset). Consequently, as we progress

through the test set, the testing point gets temporally further and further away

from the training data. In future work, it would be useful to train a separate

model on a window of recent data for each evaluation point, so that the proximity

to the training data remains constant. We did not pursue this avenue in our study

since we were already training nearly 16,000 models.

We did however explore the effect that the proximity to training data had on our

predictions. One might expect that as the training data becomes more and more

outdated, it becomes less and less relevant and results in poorer predictions. Our

results show that this is true for the small systems, such as that of Siracusa, as

shown in Figures 4.7 and 4.8. However, for larger systems, such as that of London,

there is no observable deterioration of performance, as shown in Figures 4.5 and

4.6. Each plot serially presents the error in our models’ predictions for each of

the 120 testing points. Each point is approximately 516 minutes later than the

previous point in the series. The rightmost point of the plot is temporally furthest

from the training data, and the leftmost point is temporally nearest.

Our observations are once again attributable to the idea that station behaviour in

large systems is more stochastic than in smaller systems. Consequently, greater

proximity to the training data yields better performance in the smaller systems,

but is unimportant for the larger systems.
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Figure 4.5: Predictor performance over time for London’s 2-minute series. Av-
eraged absolute error in predicted occupancy on the y-axis. 120 testing points,
equispaced within a 9-week testing interval, on the x-axis. Multilayer perceptron
in red and decision tree ensemble in blue.
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Figure 4.6: Predictor performance over time for London’s 6-minute series. Av-
eraged absolute error in predicted occupancy on the y-axis. 120 testing points,
equispaced within a 9-week testing interval, on the x-axis. Multilayer perceptron
in red and decision tree ensemble in blue.
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Figure 4.7: Predictor performance over time for Siracusa’s 2-minute series. Av-
eraged absolute error in predicted occupancy on the y-axis. 120 testing points,
equispaced within a 9-week testing interval, on the x-axis. Multilayer perceptron
in red and decision tree ensemble in blue.
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Figure 4.8: Predictor performance over time for Siracusa’s 6-minute series. Av-
eraged absolute error in predicted occupancy on the y-axis. 120 testing points,
equispaced within a 9-week testing interval, on the x-axis. Multilayer perceptron
in red and decision tree ensemble in blue.
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Chapter 5

Conclusions & Future Work

We present an overview of our activities and main analytical results in §5.1 and

§5.2 respectively. We discuss limitations and present some directions for future

work in §5.3. Finally, our original scientific contributions are highlighted in §5.4.

5.1 Summary of Activities

We implemented a preprocessing pipeline to clean the observation data and ensure

that data from different systems were transformed appropriately to enable cross-

city comparisons (§2.3). We conducted an analysis of the system-wide occupancy

series, looking at the average daily behaviour of stations at each system (§2.4).

We built upon previous work to develop a general methodology to detect naturally-

occurring behavioural clusters of stations, and developed a simple, general heuris-

tic for determining the number of clusters (§3.1). We developed three novel no-

tions of station behaviour, applied our clustering methodology with appropriate

metrics for each, and analysed the results (§3.2, §3.3, §3.4).

We framed the problem of predicting the future behaviour of a bike station as a

univariate time series forecasting problem and developed an evaluation framework

for models (§4.1, §4.2). We developed four kinds of predictive models, choosing

parameters optimised against our evaluation testbed and based on auxiliary stud-

ies (§4.3). We trained our models and evaluated their performance based on the

forecast horizon as well as their proximity to the training data (§4.4, §4.5, §4.6).
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5.2 Summary of Analytical Results

In general, the usage of bike sharing systems varies greatly between weekdays

and weekends. Work commuters have an observable presence on weekdays in the

larger systems, but not in the smaller systems or American systems, suggesting

a greater proportion of casual use (§2.4).

In terms of the rise and fall of their occupancy over the course of a typical day,

bike stations around the world generally fall into one of three simple categories:

morning-source-daytime-sink, morning-sink-daytime-source, and “flat” (§3.2).

With respect to borrow/return activity levels, stations generally belong into one

of three major categories: 20% turnover, 90% turnover, and 50% turnover. The

greatest proportion of stations fall into the first category, suggesting that stations

are either systematically underutilised or oversized (§3.3).

Stations do not fall into neat categories according to their occupancy distribution.

However the majority of stations exhibit a rough uniform distribution, with a

slight tendency towards being emptier (§3.4).

By our first two notions of behaviour, heterogeneity in station behaviour is only

present in the largest of systems. Not only do stations in smaller systems behave

like most other stations within the same system, but all of the smaller systems ap-

pear to behave similar to each other, suggesting significant transferable knowledge

between them. By our third notion of behaviour, this phenomenon is reversed.

The time series for the vast majority of bike stations, when viewed in sliding

windows of up to 48 minutes, appear largely static. Under these circumstances,

multilayer perceptron and decision tree ensemble predictors outperform a random

benchmark, but the best results are obtained using a simple static model (§4.5).

Station behaviour in large systems is more stochastic, or at least more variable

over time, than station behaviour in small systems. Under these circumstances,

the performance of those models which are trained on a fixed training set does

not deteriorate with decreasing proximity of the test example from the training

set in large systems, but does deteriorate in small systems (§4.6).
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5.3 Limitations and Future Work

A preliminary analysis of the maps in Chapter 3 provided evidence for the idea

that heterogeneity in station behaviour is a function of the size of the system.

In future work, it would be useful to quantitatively substantiate this claim. For

example, it might be possible to profile systems based on the distribution of the

clusters among their stations.

We only conducted our clustering study on highly aggregated pictures of station

behaviour that spanned the entire length of the period under study. It would

be interesting in future work to perform clustering over shorter spans of time,

perhaps weekly sliding windows. This would allow us to see whether stations

change clusters over time, and whether there are any smaller, ephemeral clusters

that emerge and disappear during periods of unusual activity.

We analysed our time series data purely within its own context. In future work,

it would be beneficial to consider other datasets in parallel. For example:

• A study of the concurrent weather data would reveal how adverse or favourable

conditions impact system usage.

• A study of the concurrent usage of other transport systems (e.g., subways

or public buses) would reveal how transport systems interact and the degree

to which they complement each other.

• Investigating topography, major venues, footfall, and other aspects of the

area might explain unusual or unique station behaviour. In particular, we

uncovered in §3.4 that some stations were exceptionally well-utilised with

respect to their capacity. These datasets might explain their success and

suggest how less-utilised stations might be moved into this cluster.

The structure of our multilayer perceptron (§4.3) was determined manually, and

we did not explore the usage of multiple hidden layers. In future work it might

be useful to automate the construction of the network through a technique such

as cascade correlation [29].

The RMSE performance of our predictors on each station yields a measure of

the “predictability” of the station. Just as it might be possible to profile systems
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based on the distribution of behavioural clusters, it may also be possible to profile

systems based on the distribution of their stations’ predictabilities.

Our static predictor performed best when the results were averaged across all

stations in a system at every test point in the dataset §4.5. As we speculated,

this is likely due to the fact that the majority of stations have sparse activity,

and even stations with moderate levels of activity usually experience the bulk of

their activity concentrated at certain times of day. In future work, it would be

useful to identify only those stations where activity is not sparse, and then focus

on those times of day where the bulk of their activity is concentrated. This would

yield models that were much more useful for the simulation/prediction purposes

originally envisioned.

Finally, due to time constraints, we were unable to maintain constant temporal

distance between the training and test data. Doing so would require separate

training datasets and models for each evaluation point, and orders of magni-

tude greater computational time. Nonetheless, the resultant deterioration of the

predictors’ performance afforded us some insights into the relative variability of

small vs large systems (§4.6). It would be useful in the future to train models

on separate training sets for each evaluation point (or at least smaller groups of

evaluation points), maintaining a constant temporal distance between the test

data and the training data, which would potentially improve the performance of

our multilayer perceptron and decision tree ensemble models in small systems.

5.4 Summary of Contributions

Previous research has found that the usage of bike sharing systems varies between

weekdays and weekends in the systems of London and Barcelona. We provided

evidence that this may be true of bike sharing systems in general (§2.4).

We built on previous work on clustering by occupancy series by adding mean

normalisation, allowing us to get a clearer picture of the global categories into

which bicycle stations fall (§3.2). This methodology can be used to inform redis-

tribution vehicle routes and times across cities. In fact, both of the non-“flat”

clusters exhibit sharp changes in their occupancy levels between 9:00AM and
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12:00PM. This suggests that a minimal redistribution scheme, requiring only a

single daily redistribution occurring within this time window, would still be very

effective. Maps of these clusters can be used to determine rough directions for

redistribution vehicle routes, as we have demonstrated in Figures 3.3 and 3.4.

Our methodology for clustering on the borrow/return activity levels of stations

is useful for deciding whether to add or remove stations (§3.3). Physical groups

of low-activity stations suggest the removal of one or more stations within those

groups. Similarly, lone high-activity stations suggest the addition of one or more

auxiliary stations to reduce the load and improve resistance to sudden spikes.

Our methodology for clustering on occupancy distribution (§3.4) is a novel addi-

tion to the study of bike sharing systems, and allows for the direct assessment of

the demand for bicycles or vacancies at a particular station. This allows system

administrators to adjust the capacity of the station and to adjust the number

of bicycles added/removed during each pass of a redistribution vehicle so that

demand is unlikely to outstrip supply.

While our more sophisticated models were not able to outperform the simple

static model (§4.5), the multilayer perceptron did nonetheless achieve less than

10% root-mean-square error in most cases. Previous work on the use of neural

networks for time-series forecasting is scarce; to this body of work we add our

study. We introduce the use of the partial autocorrelation function, traditionally

used to select the parameters for ARIMA1 models, as a heuristic for setting the

length of the input vector for a multilayer perceptron.

Finally, throughout our clustering and forecasting analyses, we found evidence

to support the new idea that heterogeneity and variability in station behaviour

are functions of the size of the system: the larger the system, the greater the

spread of station types; and the larger the system, the greater the variability of

an individual station’s behaviour over time.

1AutoRegressive Integrated Moving Average
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