
Teach and Try: A simple interaction technique for
exploratory data modelling by end users

Advait Sarkar
Alan F Blackwell

Mateja Jamnik
Computer Laboratory, University of Cambridge

Cambridge, United Kingdom
{advait.sarkar, alan.blackwell, mateja.jamnik}@cl.cam.ac.uk

Martin Spott
BT Research and Technology

Adastral Park, Ipswich
martin.spott@bt.com

Abstract—The modern economy increasingly relies on ex-
ploratory data analysis. Much of this is dependent on data
scientists – expert statisticians who process data using statistical
tools and programming languages. Our goal is to offer some
of this analytical power to end-users who have no statistical
training through simple interaction techniques and metaphors.
We describe a spreadsheet-based interaction technique that can
be used to build and apply sophisticated statistical models such
as neural networks, decision trees, support vector machines and
linear regression. We present the results of an experiment demon-
strating that our prototype can be understood and successfully
applied by users having no professional training in statistics
or computing, and that the experience of interacting with the
system leads them to acquire some understanding of the concepts
underlying exploratory statistical modelling.

I. INTRODUCTION

There are many situations in which end-users need to per-
form simple exploratory and interactive data analysis. Typical
examples include the analysis of trends in historical data in
order to predict future values, estimation of missing data from
a data set, or “sanity checking” of new data by comparison to
known information. In this paper, we present a novel tool that
supports these kinds of operations within a spreadsheet-like
interaction paradigm.

Formally, the problem being addressed is mixed-initiative
statistical inference or machine learning. Here, the goal is to
construct a model that characterises a multivariate training
data set, and then apply that model to a test data set to
estimate missing values or gauge the correctness of preexisting
values. Specialised software packages such as scikit-learn [5],
programming languages such as R [6], and deep domain
expertise are typically needed in order to build and apply
such models. In contrast, our tool only requires the user to
be familiar with simple spreadsheet manipulation operations.

II. OUR INTERACTION TECHNIQUE

Users mark a range of cells to indicate that they have
confidence in those values. The marked cells are used to train
a statistical model. Once the training set has been specified
in this manner, the user can select any other range of cells,
potentially overlapping with the training set, in order to apply
the model to those cells. If cells in the new selection are
empty, they will be filled in. Otherwise, they will be coloured
according to their deviation from the model prediction.

This sequence of operations is illustrated in Figure 1. The
user first makes a selection of a number of rows, and then
clicks on the “Teach” button. At this point, the selected rows
are added to a training dataset. The cells are visually marked as
“taught” by colouring the text green, colouring the background
a faint green, and placing a green check mark icon in the cell.

Next, the user selects cells from a single column and
clicks on the “Try” button, as in panels 3 and 4 of Figure 1.
The variable in the selected column is now interpreted as
the target or dependent variable for the statistical model, and
the variables in the unselected columns are interpreted as the
feature vector or independent variables. The software interprets
cell selection bounds as parameters for the model, and this
allows the user to build and apply a relevant model with
a single interaction. This is contingent on the data in the
spreadsheet being laid out in a well-defined relational schema.
Upon clicking the “Try” button, the software trains a statistical
model on the rows of data previously taught, and applies the
model to the rows containing the current selection. If the cells
are empty, then the model’s predictions are used to populate
the cell contents. If cells in the new selection already contain
values, as in Figure 2, their values are not altered. Instead,
they are coloured on a red-green scale to reflect the deviation
of those values from the expectations of the model, and a
question mark icon is added.

Our prototype is implemented in Java, using standard com-
ponents of the Swing UI library. We use the Java API provided
by the WEKA Data Mining Software [4] to implement the
algorithms for statistical inference. In our current prototype,
we use the standard WEKA implementations of the multilayer
perceptron, C4.5 decision tree, support vector machine, and
simple linear regression.

III. EXPERIMENTAL STUDY

We evaluated our prototype using a variant of the “Cham-
pagne Prototyping” (CP) method [1], in which an advanced
spreadsheet feature is demonstrated to an end-user, who is
then interviewed to determine whether they have understood
the conceptual basis of what they have seen without explicit
explanation. In this study, we extended the method, asking the
user to then carry out tasks of a similar nature by themselves, in
order to see whether they are able to generalise their conceptual
understanding and develop the competence to apply it without

Advait Sarkar
Sarkar, A., Blackwell, A. F., Jamnik, M., & Spott, M. (2014). Teach and try: A simple interaction technique for exploratory data modelling by end users. In 2014 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 53–56). IEEE. doi:10.1109/VLHCC.2014.6883022



Fig. 1: The “filling” capability of the prototype, depicted as a sequence of actions from left to right. This resembles an actual
scenario presented to the participants of our study, in which they were asked to imagine themselves as a maths teacher grading
students based on their score on a recent exam. Each row is a student. The first column is their score, and the second column
is their grade. A score of 75 or above gets an A, 50 to 74 gets B, and 49 or below gets C. Some of the Grade column is
pre-populated, and the participants were asked to use the software to “quickly grade the remaining students”. The model being
implicitly built in these figures is a decision tree classifier.

Fig. 2: The “evaluation” capability of the prototype, depicted as a sequence of actions from left to right. This resembles an
actual scenario presented to the participants of our study. They were asked to imagine themselves as a maths teacher assessing
the competency of a colleague, who had graded the latter section of the students. The first section of the Grade column is
pre-populated with “correct” data as per the marking scheme from Fig. 1, and the participants were asked to use the software to
“check whether the new teacher understands how to grade papers”. Here, the machine learning task is that of classification, so
there are only two colours assigned to the cells; green for “correct” and red for “incorrect”. In other scenarios, where the target
variable was numerical and continuous, the cells were coloured according their percentage error on a linear red-green scale.



further assistance. A further distinction between our study and
CP is that in CP, “the core feature of interest is not actually
executable by the computer or even by the researcher”. In
contrast, the feature of interest in our prototype is completely
functional and is executed on the computer.

We recruited 21 participants, largely administrative staff,
from the University of Cambridge Computer Laboratory and
BT Research. Of these, 8 participants had some prior exposure
to statistical concepts. The remaining 13 participants had no
prior experience with either machine learning or statistical
modelling, but had a basic familiarity with spreadsheet en-
vironments. We enforced this categorisation through a post-
experiment interview about users’ prior knowledge.

We created seven small tasks with corresponding datasets.
Each task presented the user with a hypothetical scenario in
which they used the software to perform a simple statistical
procedure, without any explicit acknowledgement that they
were doing so. Of the seven tasks, three were so-called “filling”
tasks. These required the user to use existing data to fill in
missing information. A further three were “evaluation” tasks,
which required the user to use known high-quality data to
assess or evaluate the quality or correctness of certain other
data. A final task combined both filling and evaluation into
one spreadsheet.

The experimenter demonstrated the use of the software for
one of the evaluation and filling tasks each. The user was then
asked to complete the remaining tasks, and was asked after
each to explain what they had done. The order of the tasks
was counterbalanced across participants. User responses were
recorded, transcribed and analysed. For each user we recorded
the time taken to complete the task, and observed unprompted
references to statistical concepts.

IV. RESULTS

A. Task durations

We did not observe a significant difference in task durations
between the inexperienced and the experienced participants,
suggesting that the software is equally usable by users with
knowledge of machine learning or statistics as well as users
without any prior exposure to such concepts.

We observed a significant effect of task order on task
duration within task type; specifically, the second task of any
type (“filling” or “evaluation”) takes less time than the first
task of the same type. The task durations were not normally
distributed, so the Wilcoxon rank sum test is applied to yield
a highly significant location shift (p < 0.004). The size of the
effect is a median improvement of 2.9s from the first task to
the second (the mean improvement is 33.6s, but as the data is
highly non-normal this measure is biased by outliers). A plot
of the task durations is shown in Figure 3. We interpret this
gain in speed as evidence of the learnability of our interaction
mechanism; the experience of interacting with the software
leads the user to quickly acquire the competence to apply it
in a new context.

B. Conveyance of statistical concepts

We now argue that the participants developed a nontrivial
understanding of how the software works. Upon completion of

Fig. 3: Frequency distribution of task duration, broken down
by task order. Observe the decreased spread in the second task.

the tasks, the participants were asked two questions in order
to establish what kind of understanding of the system the
user had acquired; specifically, these were (1) “How might the
computer be doing this?”, and (2) “Why might the computer
make mistakes?”.

Because of the potential bias from previous experience,
we now deal exclusively with the utterances of the participants
whom we consider to be inexperienced with respect to machine
learning and statistical concepts. Note that we present the
following observations not to make strong claims about the
taxonomy of users’ beliefs, but rather to demonstrate that users
had gained a sufficient appreciation of the machine learning
paradigm (that of building a model using trusted data and
applying it for inference) to enable more confident use than if
the software’s behaviour seemed difficult to predict.

1) Mathematical: On 3 occasions, participants used
mathematical terminology to describe their under-
standing of the software, guessing that it was “solving
a system of linear equations”, “finding some sort of
correlation”, or “plotting a graph”.

2) Technical / software constructs: On 3 occasions par-
ticipants explained the software’s behaviour in terms
of technology they were familiar with; in particular,
these participants thought that the computer might be
constructing complicated spreadsheet formulae, SQL
queries or conditional formatting rules.

3) Case-based reasoning: On 3 occasions participants
informally described the case-based reasoning, or
nearest-neighbour prediction algorithms (“If a state-
ment has been shown to be true in the past, then in the
future, this statement must also be true” / “It checks
to see if there is a precedent”). This suggests that
nearest-neighbour matching or case-based reasoning
may be among the most intuitive machine learning
algorithms.

4) Non-technical: On 6 occasions, participants described
the software’s behaviour in abstract, non-technical
terms, saying that it “spotted patterns”, “makes dif-
ferent connections between the numbers”, “deduces
rules”, “makes assumptions about how things should
look and extrapolates”, or “accumulates experience”.



Furthermore, when asked why the computer might make
mistakes, the participants provided multiple explanations
which have familiar implications in statistics and machine
learning, such as the following:

1) Insufficient examples (7 cases): “There’s not enough
information available [...] to exactly predict the pat-
tern” / “What you taught it didn’t cover it” / “The
more data you have, the better will be the outcome”

2) Noisy training data (7 cases): “What you taught was
wrong” / “It could be getting mixed messages from
the data” / “There is a contradiction in the data”

3) Insufficient discriminatory power (between statistical
classes) (4 cases): “Maybe the [data] overlap and
they’re quite ambiguous”.

4) Outliers (3 cases): “It might be exceptional data”
5) Incorrect model (3 cases): “The method isn’t yielding

the correct answer”
6) Insufficient dimensions (3 cases): “There might be

other factors besides those listed in the data that
influence the outcome”

C. Usability issues

Some participants initially misunderstood how the selection
bounds for the “Try” action were being interpreted. The most
common error (3 cases) was to select all the cells in the
target rows, because they had done exactly that for the “Teach”
action. The next most common error (2 cases) was to select all
cells in the target row except the cells in the target column, to
instruct the computer to “Try to use this data...”. This suggests
that while the “Teach” selection is immediately intuitive,
further work might be conducted in order to establish a more
intuitive mode for the “Try” selection. One possible alternative
is to invert the order in which the actions are taken, so that
the “Teach” and “Try” buttons are pressed before making the
selection. Here, the cursor would allow the user to “paint”
regions of the spreadsheet as training or test data.

Additionally, some participants found the “Teach” and
“Try” labels confusing; “Teach” is an action taken by the
user, whereas “Try” is an action taken by the computer. This
semantic irregularity caused some initial difficulty, which was
overcome once the participant had completed the first task;
however, future work might investigate alternative labels, such
as “Train” and “Test”, or “Learn” and “Apply”.

V. RELATED WORK

The cell annotation aspect of our technique is related to
WYSIWYT [7], in which users of a spreadsheet test it by
marking “correct” values in individual cells, allowing the sys-
tem to synthesise boundary conditions. However, WYSIWYT
allows users without spreadsheet programming knowledge to
debug their data, whereas our system allows users without
statistical knowledge to build and apply statistical models.

The filling behaviour may appear similar to the string
processing algorithm for spreadsheets due to Gulwani [3];
however, the capabilities of the underlying systems are dif-
ferent. While Gulwani’s system synthesises a specific class of
string manipulation functions, our interaction technique allows
for the application of many kinds of statistical models and
inference algorithms. For inexperienced users, an appropriate

model can often be inferred from heuristic characterisation of
the selected regions. For instance, if the “Try” region contains
categorical data, a classifier is likely to be appropriate.

The Oracle Spreadsheet add-in for Predictive Analytics
(SPA) [2] provides a spreadsheet-based interface for estimating
the explanatory power of one variable with respect to another,
and for performing SVM-based classification/regression. How-
ever, the output of the system operations is displayed in a
separate spreadsheet to the original data, which reduces the
directness of its manipulation. Furthermore, operations are
triggered through a graphical wizard where the dependent
variable and feature vector are manually specified, whereas we
exploit the information present in the user’s selection bounds
to achieve the same effect. Finally, being targeted towards
Business Intelligence (BI) professionals, it exposes statistical
concepts that require domain knowledge to be interpreted, and
thus it is unusable by those without such knowledge.

VI. CONCLUSION

Our goal was to make advanced analytical techniques
available to end-users with no statistical training. We have
described a simple spreadsheet-like interaction technique that
can be used to train and apply powerful statistical models.
We have presented results of an experiment demonstrating
that the system can be understood and successfully applied by
users having no professional training in statistics or computing,
and that the experience of interacting with the system leads
them to acquire some understanding of the concepts underlying
exploratory data analysis methods.

ACKNOWLEDGMENTS

Advait Sarkar is funded through an EPSRC Industrial
CASE studentship sponsored by BT Research and Technology,
and also by a Premium Studentship from the University of
Cambridge Computer Laboratory. Many thanks to all the
participants for their valuable time and effort.

REFERENCES

[1] Alan F. Blackwell, Margaret M. Burnett, and Simon Peyton Jones.
Champagne prototyping: A research technique for early evaluation of
complex end-user programming systems. In Proceedings of the 2004
IEEE Symposium on Visual Languages - Human Centric Computing,
VLHCC ’04, pages 47–54, Washington, DC, USA, 2004. IEEE Computer
Society.

[2] Marcos M Campos, Peter J Stengard, and Boriana L Milenova. Data-
centric automated data mining. In Machine Learning and Applications,
2005. Proceedings. Fourth International Conference on, pages 8–15.
IEEE Computer Society, 2005.

[3] Sumit Gulwani. Automating string processing in spreadsheets using
input-output examples. In ACM SIGPLAN Notices, volume 46, pages
317–330. ACM, 2011.

[4] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H Witten. The weka data mining software: an
update. ACM SIGKDD Explorations Newsletter, 11(1):10–18, 2009.

[5] F. Pedregosa and et al. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

[6] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2013.

[7] Gregg Rothermel, Lixin Li, Christopher DuPuis, and Margaret Burnett.
What you see is what you test: A methodology for testing form-based
visual programs. In Proceedings of the 20th International Conference
on Software Engineering, ICSE ’98, pages 198–207, Washington, DC,
USA, 1998. IEEE Computer Society.


