
Interactive visual machine learning in spreadsheets

Advait Sarkar
Mateja Jamnik

Alan F. Blackwell
Computer Laboratory, University of Cambridge

15 JJ Thomson Avenue, Cambridge, United Kingdom
{advait.sarkar,mateja.jamnik,alan.blackwell}@cl.cam.ac.uk

Martin Spott
BT Research and Technology

Adastral Park, Ipswich
martin.spott@bt.com

Abstract—BrainCel is an interactive visual system for per-

forming general-purpose machine learning in spreadsheets, build-

ing on end-user programming and interactive machine learning.

BrainCel features multiple coordinated views of the model being

built, explaining its current confidence in predictions as well as its

coverage of the input domain, thus helping the user to evolve the

model and select training examples. Through a study investigating

users’ learning barriers while building models using BrainCel, we

found that our approach successfully complements the Teach and

Try system [1] to facilitate more complex modelling activities.

I. INTRODUCTION
Our goal is to make general-purpose machine learning

tools accessible to non-expert end-users [2]. Current solutions
(e.g., WEKA [3] or scikit-learn [4]) are designed for profes-
sional statisticians or computer scientists, and are conceptually
complex compared to end-user data manipulation tools, such
as spreadsheets. A rapidly increasing range of applications
exposes end-users to machine learning (e.g., email filtering
and recommender systems), where statistical models are ma-
nipulated implicitly through examples, rather than programmed
explicitly. These are easily adopted by non-experts, but facili-
tate modelling only within limited problem domains.

Our solution for general-purpose interactive machine learn-
ing builds upon the spreadsheet, a versatile data manipulation
paradigm already familiar to end-users. We have previously
demonstrated a simple interface that enables non-expert end-
users to build sophisticated machine learning models in spread-
sheets [1]. However, we did not address how the user might
work with large, noisy datasets, where data must be carefully
selected to properly model the domain, avoiding pitfalls such
as overfitting. How would the user know what examples to
select? Whether the model has acquired a good coverage of
the domain? Whether some training data is noisy?

The user should be able to critically evaluate the quality,
capabilities, and outputs of the model. We present “BrainCel,”
an interface designed to facilitate this. BrainCel enables the
end-user to understand:

1) How their actions modify the model, through visualisa-
tions of the model’s evolution.

2) How to identify good training examples, through a
colour-based interface which “nudges” the user to attend
to data where the model has low confidence.

3) Why and how the model makes certain predictions,
through a network visualisation of the k-nearest neigh-
bours algorithm; a simple, consistent way of displaying
decisions in an arbitrarily high-dimensional space.

II. INTERFACE AND SYSTEM ARCHITECTURE
BrainCel is a browser-based prototype. Data is loaded

from comma-separated files on the local filesystem, and must
conform to a well-defined relational schema. A standard
spreadsheet view (Fig. 1(a)) displays the file. An overview of
the spreadsheet (Fig. 1(b)) is presented to its left. Hovering on
the overview previews the rows in the proximity of the hover
location (Fig. 1(c)), enabling the user to “peek” at various parts
of the spreadsheet without losing their current position in the
main spreadsheet. Clicking on the overview scrolls the main
spreadsheet to the click position. This creates an augmented
overview+detail [5], that is, overview+detail+peeking.

A. Model training and application
We implemented the two-step interface for training and

applying models first introduced in Teach and Try [1]. The
user first selects rows of data which they believe to be correct.
By pressing the “Learn” button, selected rows are added to the
training set. To indicate that rows are in the training set, their
row numbers are coloured blue. With training data added, the
user can select empty cells and click the “guess” button to
apply the model and predict values for those cells.

Predictions are made using the k-nearest neighbours (k-
NN) algorithm. We find the k rows in the training set most sim-
ilar (closest in Euclidean distance) to the row where an empty
cell is to be filled. Columns are heuristically characterised
as containing either categorical or continuous data, based on
whether the data in the column can be parsed as numeric. If
the cell is in a numerical column, the values of the neighbours
in the same column are averaged to provide a guess. If the cell
is in a categorical column, the majority vote (mode) is taken.
Other models, including more sophisticated implementations
of k-NN, have not been considered within our current scope.
Feature weights are not currently adjustable, however, future
work may introduce additional parameter controls, such as bar
charts for feature weighting [6], varying k, and editing the
distance metric, e.g., through Brown et al.’s method [7].

B. Expressing confidence through colour
For each row, the mean distance to its k neighbours is taken

to be its confidence value [8]. A high mean distance (the row’s
nearest neighbours are relatively far from it) is interpreted as
low confidence; conversely, a low mean distance is interpreted
as high confidence. Rows are coloured on a red-green scale,
where red indicates low confidence. Additionally, lightness is
scaled so that a higher confidence is given a higher lightness;
this de-emphasises the visual salience of green and makes
it safe for red-green colour blindness. Through colour, the
overview summarises confidence over the entire spreadsheet;

Advait Sarkar
Sarkar, A., Jamnik, M., Blackwell, A. F., & Spott, M. (2015). Interactive visual machine learning in spreadsheets. In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 159–163). IEEE. 
DOI: 10.1109/VLHCC.2015.7357211



Fig. 1. Part of the BrainCel interface showing (a) the core spreadsheet, (b) the overview, (c) peeking at the spreadsheet contents, and (d) the explanatory
network visualisation. Rows with row numbers coloured blue have been added by the user to the training set, and all rows have been coloured according to the
model’s confidence. Other parts of the interface, such as the distributions in Fig. 2 and the progress graphs in Fig. 4, are visible upon scrolling down.

green areas are well-modelled by the training data, whereas red
areas are dissimilar to their nearest neighbours in the training
set, marking them out either as being inadequately represented
in the training set or as outliers.

C. Visually explaining the k-NN algorithm
A force-directed network visualisation of the model is

displayed in the lower area of the interface (Fig. 1(d)). Each
node represents a row, and has k edges going to its k nearest
neighbours in the training set. Edge lengths are proportional
to the distances to the k neighbours. We thus project the n-
dimensional rows onto a 2D space. Since in order to explain
the k-NN algorithm’s behaviour it suffices to represent prox-
imity, rather than variation along any particular dimension, we
sacrifice concrete interpretations of the spatial axes in favour
of expressing “nearness” and “farness.”

This visualisation has several advantages. First, it facilitates
why and why not explanations for any given prediction; the
answer to “why was this cell value guessed?” is that the model
drew upon the rows directly connected to it. Second, it provides
a how explanation for k-NN; the general answer to “how is
a value guessed?” is that all the rows are arranged by their
similarity to each other and each guess draws upon the most
relevant rows. Third, the emergent clusters visually reify the
abstract model. For example in a 3-class classification problem,
as in the Iris dataset [9], as rows are added to the training data,
the network first branches from one cluster into two, and then
converges at three (Fig. 3). Fourth, a colour scheme consistent
with the spreadsheet explains how confidence is computed,
since high-confidence rows (green nodes) occur close to rows
in the training set (blue nodes).

The network visualisation fits the k-NN model well, but
what about “explaining” other machine learning algorithms?
In future work, one could try and explain other algorithms
as though they were k-NN [10]. Another option is to use

Fig. 2. Distributions of taught vs overall data. The “Species” graph shows
that the class “Iris-versicolor” is underrepresented in the training data.

model-specific visualisations, such as Kulesza et al.’s bar charts
for naı̈ve Bayes [6]. The general-purpose, modular nature of
BrainCel makes it a flexible testbed for comparing different
visual “explanations” of the same model.

D. Expressing training set representativeness
BrainCel displays the value distributions within the

columns in the overall dataset, compared to the value distribu-
tions in the training set (Fig. 2). These charts expose whether
certain classes or types of data are under- or overrepresented,
either in the underlying dataset, or in the training data. Thus,
the user can assess whether the distribution of taught data is
representative of the overall spreadsheet.

E. Visualisations of machine understanding progression
To help the user understand how the model’s quality

evolved with their actions, BrainCel displays two line graphs



Fig. 3. Evolution of the model as shown by BrainCel’s network visualisation when data from the three classes in the Iris dataset [9] is incrementally added.
Rows in the training set are depicted in dark blue, and all other nodes are coloured according to their mean distance from their k nearest neighbours.

Fig. 4. Summary charts of training set representativeness and overall
confidence. The x-axis shows interaction history, with data points being
created on each edit. Tooltips show the action which created the point.

which update over time (Fig. 4). The first summarises how
well the training data represents the overall dataset. New points
are added whenever the training set is modified, computed by
summing the Hellinger distances [11] between the distributions
of attribute values in the training set and their corresponding
distributions in the overall dataset. This quantity decreases
as the distribution of training data becomes more similar to
that of the overall dataset. This graph is presented as the
“Discrepancy” between taught and overall data. The second
shows the mean confidence over all rows as a function of
interaction history: a new data point is added whenever the
spreadsheet is modified. We vertically invert this graph to
match the other graph, where lower values are more desirable,
and present it as the machine’s “confusion.”

In both graphs, tooltips describe the action which led to a
given data point being added. This provides a chronological
account of how the model evolved in response to user actions.
Since the vertical scale on these graphs is not directly related
to the user’s problem domain, the y-axis is unlabelled to en-
courage the user to think of the quantities as merely increasing
or decreasing, rather than focussing on exact values.

III. EXPLORATORY USER STUDY
We conducted a user study modelled after Kulesza et

al. [12], not as a summative evaluation, but rather to understand
how our approach could support end-user machine learning.
Thus, we observed (1) the learning barriers users encountered,
and (2) which parts of the interface were most useful and why.

The study used a think-aloud protocol. Participants com-
pleted two equally-difficult randomised tasks, where they were

given a spreadsheet (either the Iris or Zoo dataset [13]) contain-
ing empty cells, and were asked to fill the missing information
using BrainCel. The first task was done with a spreadsheet-
only version of BrainCel without visualisations (only item (a)
in Fig. 1, without confidence-based colouring, i.e., the Teach &
Try interface [1]), and the second with the complete BrainCel
interface. As with the Whyline [14], comparing a full-featured
version to a version with reduced functionality helped reveal
how augmenting the standard spreadsheet interface affected
users’ exploration of their statistical models.

We recruited participants from humanities departments at
Cambridge University. We screened out participants with prior
exposure to statistics or machine learning, leaving 7 in the final
analysis. All 7 successfully completed both tasks (populated
the spreadsheets with correct values) in under 45 minutes.

We used Kulesza et al.’s coding scheme (a subset of
Ko et al.’s learning barriers [15]). Briefly, the codes are as
follows: Design barrier: the user’s goals are unclear. Selection
barrier: the goal is clear but the programming tools required
to achieve this goal are unclear. Use barrier: the tools required
are clear, but the user does not know how to use them
properly. Coordination barrier: the tools required are clear,
but the user cannot make them work together. Understanding
barrier: the user thinks they know what to do, but their actions
have surprising results. We applied the codes to sentences.
Two researchers first independently coded random 5-minute
transcript excerpts, iteratively refining coding rules until mean
Jaccard index agreement reached 86% for a 5-minute transcript
section, and 83% for a complete 40-minute transcript. The
remaining transcripts were then coded.

A. Results: learning barriers
Fig. 5 shows the distributions of learning barriers en-

countered by our participants when using BrainCel with and
without the additional visualisations. We confirm Kulesza et
al.’s observations that Selection and Coordination barriers are
the most common. Selection barriers revealed unclear aspects
of the interface (e.g., P1: Can I select these to learn?, P3:
They’ve highlighted, so that must mean they’re okay, or does
it?). Coordination barriers occurred when the model responded
to changes in the training data in non-obvious ways (e.g., P3:



Fig. 5. Count of learning barriers encountered in all transcripts.

So let’s delete the [classifications] it got wrong and try again...
no, they’re still wrong., P4: So, what are [the model’s] problem
areas?). Design barriers occurred when choosing a strategy for
debugging incorrect predictions, e.g., whether one should add
or remove training data, manually correct the prediction, or
correct the prediction and then add it as training data.

Our small sample precludes statistical comparisons. How-
ever, it appears that Selection and Coordination barriers (found
by Kulesza et al. to be the most prevalent) are both less fre-
quent when visualisations are introduced. With visualisations,
Design, Use and Understanding barriers were observed more
frequently. This increase can be attributed to the fact that once
users have their attention drawn to the structure of the model
rather than surface features, the barriers they encounter become
more interesting. For example, P5 expressed the following rel-
atively mundane understanding barrier when working without
the visualisations: Why is that row [misclassified]? However,
with visualisations, P5 described more complex understanding
barriers, e.g.: It’s gotten that correct, but why is it still not con-
fident about it? The visualisations helped end-users extend the
zone of proximal development [16] past the simpler concepts
of the spreadsheet training paradigm to more sophisticated
conceptual issues regarding critical assessment of the model.
Thus, an analysis of the difference in barrier distributions
with- and without-visualisations is not sufficiently nuanced to
show the way in which the visualisations helped. This suggests
an additional dimension to the learning barriers, capturing a
notion of “hardness” or “sophistication,” acknowledging that
some barriers are higher than others.

B. Results: user activity flows with visualisations
We recorded participants’ transitions between interface

activities in the with-visualisation tasks and present the most
common transitions (each accounting for >5% of all tran-
sitions) in Fig. 6. The self-loops on learning, guessing and
editing correspond to an incremental approach commonly
adopted by participants where training data was added one
row at a time, and cell values were guessed one at a time, to
inspect the direct consequence of adding or removing training
rows. Similarly, the pattern Edit!Learn!Guess also appeared
frequently: manually correcting mispredictions, adding the
corrected row to the training set, and seeing if other incorrect
guesses were now correct. This suggests that manual effort
may be saved if guessed cells were not static, but constantly
recalculated like spreadsheet formulae. Participants frequently

Fig. 6. Most common activity transitions. Numbers and arrow widths
give the total observed count of transitions. “Learn” corresponds to adding
training data, “Guess” to invoking the model, and “Edit” to editing values.
“Spreadsheet” and “Network” refer to inspecting those areas respectively.

alternated between the spreadsheet and the network visualisa-
tion, using the network to diagnose mispredictions and study
the model structure. Interestingly, participants overwhelmingly
preferred to incrementally add to the training data, rather than
remove rows, to improve the model.

IV. RELATED WORK
Amershi et al. [17], and Lim & Dey [18] identify what

types of information intelligent applications should give to end-
users, and Kulesza et al. [19] demonstrate that this information
is critical for the formation of users’ mental models. BrainCel
incorporates several such information types; the network visu-
alisation answers the how and why questions about predictions,
and the distribution charts show what the system “knows.”

BrainCel’s summary line charts of model evolution build
on Behrisch et al. [20], where a live visualisation shows how
much of the data passes a confidence threshold, enabling users
to assess convergence. Similarly, our use of confidence to
highlight rows on which the user might wish to focus, is based
on Groce et al.’s experimental evidence that model confidence
is an effective way of selecting testing examples [21].

BrainCel emphasises how concepts evolve in the “mind”
of the computer (consider Fig. 3). Conversely, Kulesza et al.
present interfaces to help refine models in the mind of the
user, who may not have well-defined mental concepts [22].
The intersection of our two approaches suggests joint concept
evolution, visualising a shared man-machine understanding.

V. CONCLUSION
We have presented BrainCel, an interactive visual system

for general-purpose machine learning in spreadsheets. Brain-
Cel’s multiple coordinated views of the model explain its cur-
rent confidence, its coverage of the input domain, and provide
why and how explanations for predictions, helping the user
debug the model and select training examples. We reported an
exploratory user study confirming that BrainCel successfully
exhibits properties desirable in interactive machine learning
systems, but within the general purpose spreadsheet paradigm
previously proposed in the Teach and Try system.

ACKNOWLEDGMENTS
The authors would like to thank the participants for their

time. Advait Sarkar is funded through an EPSRC industrial
CASE studentship sponsored by BT Research and Technology,
and also by a premium studentship from the University of
Cambridge Computer Laboratory.



REFERENCES
[1] A. Sarkar, A. F. Blackwell, M. Jamnik, and M. Spott, “Teach and try:

A simple interaction technique for exploratory data modelling by end
users,” in Visual Languages and Human-Centric Computing (VL/HCC),
2014 IEEE Symposium on. IEEE, Jul. 2014, pp. 53–56.

[2] A. Sarkar, M. Jamnik, A. F. Blackwell, and M. Spott, “Spreadsheet in-
terfaces for usable machine learning,” in Visual Languages and Human-
Centric Computing (VL/HCC), 2015 IEEE Symposium on. IEEE, 2015,
pp. 283–284.

[3] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[5] A. Cockburn, A. Karlson, and B. B. Bederson, “A review of overview+
detail, zooming, and focus+ context interfaces,” ACM Computing Sur-
veys (CSUR), vol. 41, no. 1, p. 2, 2008.

[6] T. Kulesza, M. Burnett, W.-k. Wong, and S. Stumpf, “Principles of
Explanatory Debugging to Personalize Interactive Machine Learning,”
in Proceedings of the 20th International Conference on Intelligent User
Interfaces - IUI ’15, 2015, pp. 126–137.

[7] E. T. Brown, J. Liu, C. E. Brodley, and R. Chang, “Dis-function:
Learning distance functions interactively,” in Visual Analytics Science
and Technology (VAST), IEEE Conference on. IEEE, 2012, pp. 83–92.

[8] S. J. Smith, M. O. Bourgoin, K. Sims, and H. L. Voorhees, “Handwritten
character classification using nearest neighbor in large databases,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 16, no. 9, pp. 915–919, 1994.

[9] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[10] A. Sarkar, “Confidence, command, complexity: metamodels for struc-
tured interaction with machine intelligence,” in Proceedings of the 26th
Annual Conference of the Psychology of Programming Interest Group
(PPIG 2015), Jul. 2015, pp. 23–36.

[11] E. Hellinger, “Neue begründung der theorie quadratischer formen von
unendlichvielen veränderlichen.” Journal für die reine und angewandte
Mathematik, vol. 136, pp. 210–271, 1909.

[12] T. Kulesza, S. Stumpf, W.-K. Wong, M. M. Burnett, S. Perona, A. Ko,
and I. Oberst, “Why-oriented end-user debugging of naive bayes text
classification,” ACM Transactions on Interactive Intelligent Systems
(TiiS), vol. 1, no. 1, p. 2, 2011.

[13] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[14] A. J. Ko and B. A. Myers, “Designing the whyline: a debugging
interface for asking questions about program behavior,” in Proceedings
of the SIGCHI conference on Human factors in computing systems.
ACM, 2004, pp. 151–158.

[15] A. J. Ko, B. A. Myers, and H. Aung, “Six Learning Barriers in End-User
Programming Systems,” in 2004 IEEE Symposium on Visual Languages
- Human Centric Computing. IEEE, 2004, pp. 199–206.

[16] L. Vygotsky, “Zone of proximal development,” Mind in society: The
development of higher psychological processes, vol. 5291, 1987.

[17] S. Amershi, J. Fogarty, A. Kapoor, and D. S. Tan, “Effective end-user
interaction with machine learning.” in AAAI, 2011.

[18] B. Lim and A. Dey, “Assessing demand for intelligibility in context-
aware applications,” Proceedings of the 11th international conference
on Ubiquitous computing, p. 195, 2009.

[19] T. Kulesza, S. Stumpf, M. Burnett, S. Yang, I. Kwan, and W.-K. Wong,
“Too much, too little, or just right? Ways explanations impact end
users’ mental models,” in Proceedings of IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC, 2013, pp. 3–10.

[20] M. Behrisch, F. Korkmaz, L. Shao, and T. Schreck, “Feedback-driven
interactive exploration of large multidimensional data supported by
visual classifier,” in Visual Analytics Science and Technology (VAST),
2014 IEEE Conference on. IEEE, 2014, pp. 43–52.

[21] A. Groce, T. Kulesza, C. Zhang, S. Shamasunder, M. Burnett, W.-K.
Wong, S. Stumpf, S. Das, A. Shinsel, F. Bice, and K. McIntosh, “You
Are the Only Possible Oracle: Effective Test Selection for End Users of

Interactive Machine Learning Systems,” IEEE Transactions on Software
Engineering, vol. 40, no. 3, pp. 307–323, 2014.

[22] T. Kulesza, S. Amershi, R. Caruana, D. Fisher, and D. Charles, “Struc-
tured labeling for facilitating concept evolution in machine learning,”
in Proceedings of the 32nd annual ACM conference on Human factors
in computing systems. ACM, 2014, pp. 3075–3084.


