
Confidence, command, complexity:

metamodels for structured interaction with machine intelligence

Advait Sarkar

Computer Laboratory, University of Cambridge
Wiliam Gates Building, 15 JJ Thomson Avenue, Cambridge, UK

advait.sarkar@cl.cam.ac.uk

Abstract. Programming is a form of dialogue with machines. In recent years, we have become
increasingly involved in a dialogue that shapes our surroundings, as we come to inhabit a newly
inferred world. It is unclear how this dialogue should be structured, especially as the notion of
“correctness” for these programs is now unknown or ill-defined. I present a speculative discussion
of a potential solution: metamodels of machine cognition.

Keywords: POP-II.B. Program Comprehension; POP-IV.B. User Interfaces; POP-I.C. Ill-Defined Problems

Fig. 1. Are you thinking what I’m thinking? The old paradigm; programmer and program communicate primarily
through direct channels of inspection.

1 Introduction: a paradigm shift in programming

We increasingly inhabit an inferred world. The dominant mode of programming is changing. To explain more
clearly, I shall first paint a simplified caricature of the traditional programming paradigm. Figure 1 shows a
diagram, representing the traditional interaction between programmer and program. Here, the programmer has
a goal mental model of the information structure to be built. Through a direct channel, such as inspection of the
source code, its output, and execution traces, the programmer is able to build a mental model of the information
structure as it currently is. Thus, the programmer is able to compare these two models against each other in
order to decide whether the program matches the goal, whether it is incomplete, or whether it contains errors.

The old paradigm is characterised by the utility of the explicit data in the direct channel. The expected
output is su�ciently well-defined that should the output depart from the programmer’s expectations (i.e., an
error), an inspection of the workings of the program will su�ce to resolve the situation (i.e., debugging). A great
deal of study (§2) has been conducted on enriching the debugging experience with implicit information through
the “indirect” channel, for example, through descriptions of the program, through inspections of its time and
memory requirements, and through visualisations of its operation. Nonetheless, it is still possible, and in many
cases su�cient, to conduct debugging through direct inspection of the program source code, output, and traces.
Thus, the activities surrounding the traditional programming paradigm can be summarised as “are you thinking
what I’m thinking?”

1.1 End-user machine learning is the new programming

Programs are di↵erent now, however. We increasingly inhabit an inferred world (Blackwell, 2015), and the outcome
of computer algorithms is becoming predominantly probabilistic and data-dependent, rather than deterministic.

Advait Sarkar
Proceedings of the 26th Annual Conference of the Psychology of Programming Interest Group (PPIG 2015) (pp. 23–36) 



Fig. 2. What are we thinking? The new paradigm; in the absence of a useful direct channel, we must structure
our dialogue around the indirect.

The training of machine learning models can be regarded as as an act of programming. End-users of systems
such as recommendation systems (e.g., Amazon’s product recommendations, Pandora’s music recommendations),
intelligent personal assistants (e.g., Apple’s Siri, Microsoft’s Cortana, Google Now), and intelligent consumer tools
(e.g., Excel’s Flash Fill) etc. increasingly find themselves implicitly or explicitly programming their environment.
However, our interaction with these systems largely remains opaque to their decision making process, which often
involves considerable uncertainty. When the output departs from our expectations, neither are our expectations
well-defined, nor does inspecting the workings of the system resolve the situation – this is where a dialogue is
necessary.

Figure 2 illustrates how the inferred world has shifted the predominant programming paradigm. Programming
in the new paradigm is characterised by the following three properties:

1. The “programs” are stored as massive quantities of model parameters, and thus are largely human-unintelligible.
2. The programmer is likely to be an end-user programmer who is not necessarily skilled at computing.
3. The goal state of the program is unknown or ill-defined.

The combination of these makes the traditional direct channel inapplicable, and can be summarised as a
“what are we thinking?” approach to programming, where mental models of neither goal nor program are well-
structured. As a consequence, we must place greater care with the way we exploit the indirect channel, that is,
we must shift from an emphasis on facilitating the user’s understanding of the program to their understanding
about the program. Previous debugging literature has by no means ignored this channel, and neither has the
interactive machine learning literature. However, treatment of this channel has typically been on an ad-hoc basis.
By explicitly acknowledging the interaction as dialogue, we are able to take a structured approach, which is
descriptive as well as prescriptive.

In this paper, I propose a fundamental addition to the indirect programming channel: metamodels of machine
cognition. Machine learning consists of algorithms which model their output as functions of their input. But the
output of a machine learning model alone does not su�ce for a rich interactive dialogue. Is the model confident
in its own output? Has the model had adequate exposure to the domain? If these were known, we might be able
to critically appraise its predictions in a wider context. We might be able to direct the learning of the model,
to expose it to parts of the domain it still does not know about, or to provide appropriate training data to help
improve its confidence. How complex was the prediction to make? If this was known, we might be able to spot and
rectify trivial simplifications of the target domain that the algorithm is exploiting in order to make predictions.

2 Related areas of inquiry

2.1 Interactive machine learning

Our primary application domain of interest is the field of interactive machine learning. An early exploration
of how a visual interface might enable end-users to e↵ectively build classifiers is given by Ware et al. (2001),
describing the graphical interface for the popular Weka machine learning toolkit. However, their application was
still very much directed towards expert statisticians. Subsequently, the work in the area has become focused on
end-users with less awareness of statistical and computing concepts.

Perhaps the archetype of the field is the eponymous paper demonstrating the Crayons application (Fails
& Olsen, 2003), where users could train a classifier for image segmentation by directly sketching over parts of
the image to indicate positive or negative examples. Fogarty et al. (2008), and more recently Kulesza et al.



(2014) tackle the problem of labelling concepts in images, where “concepts” are not always predefined classes,
but rather can be evolved over the course of the labelling exercise. Fiebrink et al. (2011) demonstrate interactive
model training for realtime music composition and performance. To some extent, one can also consider the
following to be examples of interactive machine learning: Brown et al. (2012), who demonstrate a visual interface
for specifying distance functions, and Hao et al. (2007), who show how data visualisations can be used as a
querying interface.

Fails and Olsen motivate their work by emphasising the ease of generating a classifier in an interactive
visual manner. Similarly, Fogarty’s, Brown’s and Hao’s systems are presented from primarily an ease-of-use view.
My own work in end-user machine learning in spreadsheets (Sarkar et al., 2014) focuses on ease-of-use. These
systems achieve ease of use by massively abstracting away the workings of the system, which is generally a useful
strategy, as long as the behaviour of the program corresponds to user expectations. But what happens when the
system gets it wrong, and not in a way that is easily apparent (Szegedy et al., 2013; Nguyen et al., 2015)? To
better involve the user in the process, the repeated use of the word “explain” throughout the interactive machine
learning literature (Herlocker et al., 2000; Tintarev & Mastho↵, 2007; McSherry, 2005; Pu & Chen, 2006) does
not appear to be coincidental; clearly the underlying aim is to give our interactions with programs much more of
a dialogue-like quality.

A critical assessment of end-user interaction with machine learning has been made by Amershi et al. (2011).
The authors identify a few questions for this dialogue: What examples should a person provide to e↵ectively train
the system?, How should the system illustrate its current understanding?, and How can a person evaluate the
quality of the system’s current understanding in order to better guide it towards the desired behavior? Systematic
metacognitive modelling provides a partial answer to all of these questions.

Lim & Dey (2009) have directly addressed the problem of what types of information about intelligent appli-
cations should be given to end-users. They call these “intelligibility types,” and some examples of these are as
follows: Input & output: what information does the system use to make its decision, and what types of decision
can the system produce? Why, why not, & how: why did the system produce the output that it did, why did it not
produce a di↵erent output, and how did it do so? What if: what would the system produce under given inputs?
Model: how does the system work in general? Certainty: how certain is the system of this report? Control: how
can I modify various aspects of this decision making process? Kulesza et al. (2013) show that these information
types are critical for the formation of users’ mental models. Kulesza et al. (2011) also proposed a set of informa-
tion types which would benefit end-users who were debugging a machine-learned program, including: Debugging
strategy: which of many potential ways of improving the model should be picked? Model capabilities: what types of
reasoning can the model do? User interface features: what is the specific function of a certain interface element?
Model’s current logic: why did the model make certain decisions? User action history: how did the user’s actions
cause the model to improve/worsen? This presents excellent motivation for systematic metacognitive modelling,
without which such information cannot be generated.

2.2 End-user debugging

The producers of these machine learning models are also their users. As such, this is related to end-user software
engineering (Ko et al., 2011), and in particular end-user debugging. Interestingly, end-user debugging has so far
been quite explicit in framing the interaction as dialogue. Wilson et al. (2003) argue that programming assertions
in spreadsheets is di�cult and boring, and present a strategy to incentivise users to write more assertions. This
strategy – surprise, explain, reward – is much like dialogue. The software generates what it thinks is a surprising
assertion that nonetheless fits a cell’s formula. It changes the value of the cell to be valid under this assertion,
and explains this decision and how to change the assertion through a tooltip. Finally, the user is “rewarded” by
virtue of having a more correct spreadsheet.

Ko & Myers (2004) present the “WhyLine,” a debugging tool that is meant to operate literally as dialogue.
By scanning the function call structure of a program execution, the tool can create hierarchical menus which allow
the user to formulate grammatically correct “why” questions about the execution of a program. Interestingly,
Kulesza et al. (2009, 2011) take this approach to facilitate end-user debugging of the underlying näıve Bayes
model of a email spam classifier.

As with interactive machine learning, allusions to “explanations” also appear throughout the end-user debug-
ging literature. However, there is an important distinction to be made between the type of dialogue one engages
in when debugging, and the type of dialogue one has with a machine learning model. The activity of “debugging”
principally occupies the direct interaction channel, as in the old paradigm. Treating the training of machine
learning models as debugging can only be informative for interaction design up to a point. The debugging situ-
ation assumes that the user’s mental information structure is the correct version, which the computer’s internal
information structure must aim to reproduce. That is, we assume the human knows the right answer. This is
not to say that the programmer always knows how to concretely express the required information structure in
a given programming language; perhaps the programmer receives assistance from the system, as in Wysiwyt
(Rothermel et al., 1998). However, in the old paradigm, the final arbiter of what is, and is not a “bug,” is the
programmer.



Conversely, in the new paradigm, the right answer is either unknown or ill-defined. It follows that under these
circumstances, “debugging,” or even a “bug,” cannot definitively exist. In the class of situations we are dealing
with today: product recommendations, automated diagnostics, weather forecasting, etc., neither the human nor
the computer knows the right answer, but rather they are in a dialogue to try and resolve the issue together. Thus,
both parties must be transparent to one another. I suspect that one of the reasons Teach and Try (Sarkar et al.,
2014) was so successful at generating an understanding of statistical procedures in non-experts is the deliberate
selection of the word “Try” as opposed to “Fill” or “Apply model”; it implies fallibility and evokes empathy.

2.3 Mixed-initiative interaction

Mixed-initiative interaction explicitly acknowledges that program behaviour could be usefully augmented by
models that were not strictly about the problem domain. In this case, the models being made are of the user, and
of user intent. Horvitz (1999) argues that mixed-initiative systems (i.e. automated services) must exhibit certain
“critical factors”, or principles. The most pertinent of these to this paper is that decisions must be made under
awareness of uncertainty about user goals, and the cost of distracting the user.

As a case study, Horvitz uses a calendaring service which automatically parses emails for event date/time
information and suggests actions based thereupon. Importantly, Horvitz provides a decision-theoretic heuristic
for taking an action based on an expected utility function. This function is calculated given beliefs about a user’s
goals derived from observed evidence. Action is taken when the utility for action exceeds that of inaction. In order
to implement this, an explicit utility model must be built and updated as the user interacts with the software.
This idea can be adopted for our use in the new programming paradigm, not to model the user, but to model
the program itself.

3 A proposition: models of machine cognition

From interactive machine learning, I take the pertinent and emergent domain of end-user programmers of machine
learning models. From end-user debugging, I adopt the strategy of treating interaction as dialogue. From mixed-
initiative interaction, I appropriate the strategy of developing explicit metamodels, to consider thinking about
the program rather than of the program itself. Consequently, I propose that it is a useful, systematic strategy to
augment machine learning models with metamodels. What should be the subject of these metamodels, and how
many are required? Let us begin with the following:

1. Confidence: how sure is the program that a given output is correct?
2. Command: how well does the program know the domain?
3. Complexity: did the program do a simple or complex thing to arrive at the output?

I believe that these three are necessary for successful dialogue of the kind outlined in the introduction.
They are not exhaustive, but have emerged to be clearly important from careful consideration of the engineering
requirements for improving end-user programming of machine learning models in a variety of scenarios, which
shall be elaborated in §4.

The metamodels are intimately related to the information types proposed by Lim & Dey (2009) and Kulesza et
al. (2011). Those frameworks prescribe types of information which would be beneficial to an end-user programmer
of machine learning models, but do not prescribe how such information might be generated. So while these
metamodels are a conceptual solution at the same level as the intelligibility types, i.e., they prescribe things
which should be shown to the user, they are also an engineering solution at a technical level, i.e., they prescribe
how this information can be generated. With systematic metamodelling, it may not be necessary to recreate
methods for providing intelligibility for each new interface and machine learning system on an ad-hoc basis.

In the following subsections, I shall illustrate and elaborate upon each of these three metamodels in turn.

3.1 Confidence

Confidence has been dealt with throughout the statistics and machine learning literature. Methods for estimating
the error or confidence for any given output have been developed for many models. Linear regression, one of
the simplest statistical models, is accompanied by a procedure for computing the 95% confidence intervals for
its learnt parameters, which can be interpreted as confidence: the narrower the intervals, the more confident
the prediction. However, being able to estimate this confidence is not necessarily incentivised in benchmarks of
machine learning performance, which are primarily concerned with the correctness of the output.

Table 1 presents some suggestions for how confidence may be computed for popular machine learning tech-
niques. Measures of confidence can be used to prioritise human supervision of machine output; when there are
large quantities of output to evaluate, the user’s attention can be focused on low-confidence outputs, which may
be problematic. González-Rubio et al. (2010) use this approach to improve interactive machine translation, and



Kulesza et al. (2015) use this approach to improve interactive email classification. Behrisch et al. (2014) show a
vision of enriched dialogue, made possible through a confidence metamodel: in their software, the user interac-
tively builds a decision tree by annotating examples as “relevant” or “irrelevant,” but is able to decide when the
exploration has reached convergence due to a live visualisation of how much of the data passes a certain threshold
for classification confidence.

Table 1. Practical confidence metamodel suggestions

Model Suggested calculations of confidence

k-NN For a given prediction, confidence can be measured as the mean distance of the output label from its k
nearest neighbours as a fraction of the mean pairwise distance between all pairs of training examples.
A similar metric is proposed in Smith et al. (1994).

Neural
Network

For a multi-class classification, where each output note emits the probability of the input belonging
to a certain class, confidence can be measured simply as the probability reported. More sophisticated
confidence interval calculations can be obtained by considering the domain being modelled, as in
Chryssolouris et al. (1996); Weintraub et al. (1997); Zhang & Luh (2005)

Decision
Tree

The confidence of a decision tree in a given output can be measured as the cumulative information gain
from the root to the outputted leaf node. Alternatively, Kalkanis (1993) provides a more traditional
approach.

Näıve
Bayes

The confidence of a Näıve Bayes classifier in a given prediction can be measured as the probability of
the maximally probable class. More sophisticated treatment of the problem is given by Laird & Louis
(1987); Carlin & Gelfand (1990).

Hidden
Markov
Model

The primary tasks associated with HMMs (filtering, prediction, smoothing, and sequence fitting) all
involve maximising a probability; the confidence can simply be measured as the probability of the
maximally probable output. More fine-grained confidences can be measured by marginalising over the
relevant variables (Eddy, 2004).

Confidence alone, however, can be deceiving. Recent work (Szegedy et al., 2013; Nguyen et al., 2015) has
demonstrated how some apparently straightforward images with carefully injected noise, as well as completely
unrecognisable images, are still classified with high confidence by a state-of-the-art image classifier. Thus, con-
fidence is not the end of the story when it comes to understanding a machine’s abilities – it may be necessary,
but is not su�cient.

3.2 Command

Addition of a second metamodel, “command,” is a further step towards enriching the description of machine
understanding. It has been expressed in various forms in the literature. The dream of a self-regulated, autonomous
agent is long lived in GOFAI and modern machine learning, motivated by such issues as the “exploration-versus-
exploitation” tradeo↵; i.e., should the agent do something which has been known to provide a certain reward, or
should the agent explore the wider world in search of potentially better rewards, at the risk of wasting resources
on less-rewarding world states?

Systems developed towards this aim often exhibit primitive forms of metacognition. A most basic example of
a famous problem which benefits from this form of metacognition is that of the multi-armed bandit (Gittins et
al., 2011). A gambler at a row of slot machines has to decide which machines to play, how many times to play each
machine, and in which order to play them, in order to maximise the cumulative reward earned. Each machine
provides a random reward from a distribution specific to that machine. Thus, the tradeo↵ is between exploration,
i.e., playing machines in order to learn about their reward distributions, and exploitation, i.e., playing machines
in order to gain the reward. A solution to this problem must necessarily involve a model of command, i.e., how
much is known about the reward distribution of each machine, in order to e↵ectively navigate this tradeo↵.

Similarly, the concept of reinforcement learning (Watkins, 1989) involves a “reward function”, which records
the reward an intelligent agent might hope to receive upon transitioning to any given world state; the agent can
then probabilistically transition to world states that will either fulfil its information need by updating the reward
function, or alternatively will pay o↵ by way of actually receiving the reward. A related concept is active learning
(Cohn et al., 1996; Settles, 2010), where the algorithm is able to select examples it believes to be most useful
for its learning, and presents these examples to a human oracle (or other information source) for labelling. The
motivation behind active learning is similar to exploration-vs-exploitation: that the algorithm may achieve greater
accuracy with fewer training examples should it choose the data from which it learns. Savitha et al. (2012) show
a “metacognitive” neural network which can decide for itself what, when, and how to learn from each training
datum it is given. Interestingly, common to these techniques is their reliance on an additional model, that of the
input domain, so that the agent is able to distinguish between what is known and what remains to be known. In



Fig. 3. Two alternate views of command: on the left, a visualisation of labelled training examples in the input
space. On the right, a visualisation of the learned decision boundaries, showing an area of reduced certainty.
These are radically di↵erent interpretations. Consider the bottom right-hand corner. The classifier predicts ‘blue’
with high confidence, but since it has not seen any examples from that area, should it really be confident?

reinforcement learning, this takes the form of the state space. Thus, any practical definition of “command” has
to be constructed in relation to a definition of the domain being modelled.

I can suggest two simple methods of illustrating the command of a machine learning algorithm over a certain
domain. The first is to look at the training examples the classifier has so far received, as positioned in the input
domain. The second is to look at the classifier’s confidence at all points in the domain. These are illustrated in
Figure 3. It is clear that these two images paint a very di↵erent picture of the algorithm’s “command” over a
domain. If we view command as some integral of confidence, then an algorithm with high levels of confidence
in the majority of the domain can be considered to have a good command of the domain. If we view command
as some integral of the occurrences of training examples encountered, then an algorithm which has received a
uniform spread of training examples may be considered to have a good command of the domain.

The command metamodel is intimately related to the problem, in interactive machine learning, of seeking
relevant examples for the e�cient training of a classifier. When Amershi et al. (2009) discuss how one might seek
examples providing greatest information gain for the classifier, what they are really doing is building a partial
command metamodel; a full metamodel would allow generative dialogue – their software would not only be able
to identify examples from the existing corpus but also generate examples which satisfy perfectly the classifier’s
information need (provided that the human or other oracle who will label these examples can actually do a good
job (Baum & Lang, 1992)). Groce et al. (2014) approach this from the perspective of end-user classifier testing,
and show various strategies for selecting a testbed of evaluation examples. A method of eliciting examples is
technically isomorphic to a command metamodel, since any such method must be able to define and identify
deficiencies in the machine’s training.

While algorithmic notions of “confidence” and “command” are not completely novel, they are usually not
considered for the benefit of an advanced dialogue between human and model. The notion of “confidence”, which
is most mature, simply quantifies to human minds the quality of the prediction, but does not always suggest
a further course of action. The notion of “command”, in the case of reinforcement learning, is internal to the
intelligent agent and embedded in its data structures, and not amenable to presentation or interpretation.

3.3 Complexity

The notion of complexity is the least discussed, and perhaps most interesting. How can exactly the same model
produce more or less complex results? Consider the case of a neural network. It can be argued that when an
input highly activates many of the nodes in a neural network, the decision making process is more complex than
one which involves fewer nodes. This, despite the fact that the model structure is identical, with identical edge
weights. It is analogous to the di↵erence between mentally computing 199+101 and 364+487. One can follow an
identical arithmetic “algorithm,” and be equally confident in both answers, but one of these instances appears to
be more complex than the other. A lot of what we think of as “complex” behaviour arises not out of a complex
algorithm, but rather complex inputs. Deep Blue may have astonished with its famous defeat of Kasparov in
1997, but it did so not because it was following a complex algorithm; far from it. It did so because the input space
and the domain carried with it considerable complexity. This idea is encapsulated in the allegory of Simon’s ant



(Simon, 1996): observing an ant’s convoluted, weaving path across a rocky beach, one might come away with the
impression that the ant’s behaviour is incredibly complex. However, the ant is only following extremely simple,
local protocols for avoiding rocks and other obstacles as it attempts to achieve its general goal of returning
home. The apparent complexity in its behaviour arises from the environment; it is not necessary to capture the
complexity of the entire path in order to simulate an ant, but merely its localised obstacle-response protocols.

A “complexity” metamodel would capture this nuance: to produce a given output, has the model followed a
parsimonious path from input to output, or grappled with a tortuous path through the rocks on a beach? This
has historically been a fiendishly di�cult problem for builders of practical machine learning systems, especially
when attempting to generalise from small datasets. For example, when Cooper et al. (1997) were building a rule-
based learning system to predict the likelihood of death from pneumonia in order to advise clinical treatment
decisions, they discovered that the system was exploiting an artefact in the training data to make its predictions,
namely that if the patient was an asthmatic, the model would actually predict a higher likelihood of survival! This
absurd, medically demonstrable falsehood, was attributable to the fact that the model was trained on treatment
records where asthmatics were given much more aggressive treatment in order to compensate for the poor status
of their respiratory system, since they were known to have a greater risk of death. As a consequence, they had
a better survival rate than non-asthmatics, and the model had picked up on this. Because of the complexity
of the rule-based learning model being employed, it was impossible to guarantee that there were no such other
inconsistencies in the model. This led to the model being dropped, and a much simpler class of “intelligible”
models being adopted (Lou et al., 2012, 2013) despite having lower predictive power. This turned out to be a
wise decision, as the model was subsequently found to be exploiting other similar false correlations. Similarly,
researchers attempting to build a computer vision system for quantifying multiple sclerosis progression based on
depth videos (Kontschieder et al., 2014) found that the system was exploiting patients’ facial features in order
to “remember” their training labels, so as to cheat the leave-one-out cross validation being used for evaluation.

Table 2 presents some suggestions for how complexity may be computed for popular machine learning tech-
niques. Note that these are deliberately underspecified, and serve only to further illustrate what aspect of machine
learning models is captured using the “complexity” notion.

Table 2. Practical complexity metamodel suggestions

Model Suggested calculations of complexity

k-NN The complexity of a given prediction can be measured as the variance of the distances for the k nearest
neighbours. A larger variance can be interpreted as a more complex decision.

Neural
Network

Setting a threshold t above which we consider a neuron to be “activated” (e.g., for a sigmoid activation
function we might set t = 0.9), we can define the notion of “t-complexity”, where the t-complexity of
a neural network prediction is the fraction of the nodes in the network which are activated to level t
or above.

Decision
Tree

The tree-depth of a prediction provides a simple measurement for the complexity of a decision. For
a more complex alternative, we might set a threshold i at which we consider the “majority” of
the information gain to have been achieved, and define the notion of “i-complexity”, where the i-
complexity of a decision tree prediction is the tree-depth at which the cumulative information gain
exceeds i en-route from the root to the outputted leaf node.

Näıve
Bayes

Each classification decision in a Näıve Bayes classifier involves summing log probabilities of individual
features given a class. The complexity of a Näıve Bayes classification decision can be measured as the
variance of the log probabilities; a greater variance can be interpreted as a more complex decision.

Hidden
Markov
Model

Each of the primary HMM tasks will have di↵erent models of complexity. Intuition would suggest
that a “simple” decision would be robust to small perturbations of the priors, transition function, and
length of sequence that the algorithm is given to operate upon. Thus, if we define a threshold p on
any of these quantities, then an HMM decision can be said to be p-simple if its output is robust to
perturbations of magnitude less than p in its priors/transition function/sequence length.

It is important to note that the confidence and complexity measures are both always computed with respect
to a given prediction. That is, whenever the model is used to make a prediction or classification, there is an
associated value of confidence and complexity unique to that run of the algorithm. In contrast, the “command”
metamodel refers to the current state of the algorithm’s knowledge, not necessarily dependent on a single output.



3.4 Substituting metamodels as explanatory metaphors

We can take the technique of metamodelling for the facilitation of dialogue one step further, and achieve some
interesting things, if we relax the accuracy constraint. That is, what if our metamodels don’t strictly model what
they’re supposed to, but still provide plausible representations of that model’s confidence, command, and com-
plexity? This would be extremely useful in a case where our machine learning model is impossible to metamodel;
we can nonetheless perform metamodel substitution to provide dialogue. Perhaps the decisions of a deep neural
network are impossible to easily and correctly explain to an end-user, but if we present explanations as though the
system is performing case-based reasoning (previously shown to be an intuitive approach (Sarkar et al., 2014)),
then that may su�ce. Thus, one metamodel can be used as a metaphor for another.

3.5 Metadialogue and metainteraction

The models of confidence, command, and complexity are repeatedly referred to as meta-models. I use this in the
sense of “about,” as in metadata (data about data) and metacognition (cognition about cognition), and so forth.
At this level, the word “metamodel” simply refers to the fact that these are models about other (statistical and
machine learning) models. However, there is room to discuss the treatment of the “meta-” prefix in the sense of
“above,” denoting a higher layer of abstraction, as in metaphysics, or perhaps metatheory. The primary object
of study here is the interaction, or dialogue, between user and program, and not the models themselves. While
we deal with the three metamodels as descriptors of the machine cognition, they could equally be descriptors of
the interaction. For instance, while “complexity” is described here as a property of a statistical model, it could
also be a property of the interaction itself, and this complexity may well be more noteworthy. This appears to
bear greater relation to the problem of cognitive dimensions (Green & Petre, 1996), since it relates to the user
experience of information structures as borne out through its visual and notational externalisations. Thus, it is
quite possible that the brand of interaction we are considering here is more suitably called meta-interaction, or
metadialogue. While a thorough treatment of this terminology is beyond the scope of the current discussion, a
more detailed investigation in this direction would be an interesting subject of future study.

4 Analysis and applications

In this section I discuss how some examples of interactive machine learning systems are already benefiting from
metamodel implementations, and can be usefully augmented by considering additional metacognitive models, or
by newly considering their existing implementations.

4.1 Image segmentation

The Crayons application due to Fails and Olsen (Fails & Olsen, 2003) is a classic example of interactive machine
learning. By “painting” positive and negative examples onto an image, the user can build a classifier which is
able to segment areas of an image into two classes, e.g., a classifier which can classify human skin from non-skin
objects in an image. It provides direct visual feedback on the image itself, by respectively darkening or lightening
the negatively and positively classified images.

If a confidence metamodel was implemented, then instead of a standard intensity of darkening or lightening,
the image could be overlaid with a colour whose intensity corresponded to the confidence with which pixels were
classified as belonging into one class or another, as in Figure 4. This would further help the user refine their
classifier, as it would be possible to identify regions which, while correctly classified, only just cross the decision
boundary and thus have low confidence.

4.2 Email classification

Kulesza et al. have pursued a line of work which has investigated how one might assist users to debug rules
learnt by a näıve Bayes classifier to categorise emails in various user-generated categories (Kulesza et al., 2009,
2011, 2015). They present EluciDebug, a visual tool for providing explanations of the näıve Bayes classifier’s
classification decision with respect to a given email. In doing so, they build an explicit metamodel of confidence,
which can be used to sort emails and focus the user’s attention on emails which may have been misclassified.
They build an explicit metamodel of complexity, wherein the entire set of weights used to make the decision
can be inspected through a series of bars, and thus it is apparent whether the classificiation was straightforward
(dominated by a few clear high weights) or complex (wide distribution of potentially conflicting weights).

They also approach the development of a command metamodel; they use the sizes of di↵erent folders (which
represent di↵erent classes) to explain the machine’s prior beliefs regarding the likelihood of an unknown message
belonging to any given class. This approaches a command metamodel since it alludes to the distribution of
training examples the machine has thus encountered. However, it does not situate these examples in the input



Fig. 4. On the left: a simplified representation of the original Crayons interface, which shows classification of an
image based on a binary threshold. On the right, a confidence-based visualisation which exposes how the classifier
may still be uncertain about the fingers, and thus additional annotation may be beneficial.

domain. It is possible to envision a visualisation of all training examples, along with their text, projected from
the high-dimensional space in which they reside onto a 2D manifold, such that deficiencies in the algorithm’s
experience can be identified. This is the precise approach taken by Amershi et al. (2009) for interactive image
classification. A full command metamodel, defined with respect to the input space (finite-length finite-dictionary
word vectors), would also enable the e↵ective eliciting of appropriate training examples. This could take the form
of either identifying emails which would greatly improve the overall confidence of the classifier if a label was
obtained for them, or could extend to the artificial synthesis of an email whose label would satisfy the classifier’s
information needs.

4.3 Concept evolution in images

The CueFlik application due to Fogarty et al. (2008) presented a visual, programming-by-example method for
designing classification rules to sort images in a database into di↵erent categories. Kulesza et al. (2014) expand
upon this by acknowledging that users may not initially, or ever, have well-defined mental concept models (a
key characteristic of the new programming paradigm discussed in §1.1), and so provide an interactive experience
whereby the user is walked through a sequence of images which can be selected as belonging to a suggested class,
or not. Automatic summaries of categories are generated to help the user remember what was distinctive about a
particular category. Similar images from the corpus are displayed to assist the user in deciding whether creating a
new category is warranted. Thus, the user can simultaneously refine their understanding, as well as the machine’s
understanding, of the categories they are creating.

Kulesza et al. provide suggestions for classes based on a recommendation system-like algorithm which com-
pares the similarity of the image currently being classified to already-categorised images. Currently, the only
feedback presented is in the form of a yellow star icon being placed next to the category the algorithm thinks is
most appropriate. Using a confidence metamodel, one can envision an interface where di↵erent category labels
are ranked, sized, or coloured according to the machine’s confidence. This would help users identify categories
which are potentially only weakly described by the training data.

A metamodel for complexity, driven by simplified representations of the input space, would potentially alert
users to trivial simplifications being exploited by the algorithm, as in the examples presented in §3.3. One example
of such a simplification is as follows: while categorising images of dogs and cats, it is possible that since most
pictures of dogs are taken outdoors on green lawns, and most pictures of cats are taken indoors, what one is
actually training is a classifier which detects the colour green. A complexity metamodel would be able to highlight
how many, or which of the input image features are being used to make a decision, enabling the user to decide
when to enrich the dataset or when to prune the feature space to prevent oversimplifications of the domain.



4.4 Analytical data modelling in spreadsheets

In Teach & Try (Sarkar et al., 2014), the user follows a two-step process to perform interactive machine learning
in spreadsheets. The user first selects rows in which they have high confidence, and marks them using the “Teach”
button. Next, the user selects rows to which they wish to apply the model, either in the form of populating empty
cells with the model’s predictions, or by evaluating the cells’ current contents against the model’s expectations.
Pressing the “Try” button applies the model.

While fairly simplistic, we were able to show that the experience of interacting with the software led users
to gain some appreciation of statistical procedures. During a post-experiment interview, participants were asked
questions such as how might the computer be doing this?, and why might the computer make a mistake? It is
important to note that none of our participants had any formal training in statistics or computing. Nonetheless,
participants were able to informally articulate several potential algorithms (e.g., nearest-neighbours, case-based
reasoning, and linear regression), as well as well-known issues with statistical modelling (e.g., insu�cient data,
insu�cient dimensions, outliers, noise, etc.).

With a confidence metamodel, Teach and Try would enable users to critically evaluate its predictions. When
a large number of predictions has been made, the confidence metamodel provides a heuristic with which the user
can assess its performance; the user can choose to prioritise examining and correcting low-confidence predictions.
With a command metamodel, it would be able to show users how the ‘taught’ rows are spread across the input
domain, it would potentially be able to highlight areas of the data where receiving a user label would be beneficial,
and potentially synthesise examples to be labelled.

Here, a complexity metamodel would again help users identify potential simplifications of the domain that the
algorithm might be exploiting in order to perform its predictions, such as the pneumonia prediction and multiple
sclerosis diagnostics examples given in §3.3. Another example might be as follows: a spreadsheet containing patient
data, where each row represents a patient and each column represents various attributes of the patient (e.g., age,
blood type, results of various diagnostic tests), may also have within it a ‘date’ field, representing the date that
patient’s entry was recorded. Prior to a certain date, only patients with a certain severity of illness were recorded
in this spreadsheet. When using this spreadsheet to help assess whether or not a new patient may have a severe
illness, a visualisation of the complexity model (perhaps in the form of how much each column contributed) might
reveal that a decision tree has decided that the ‘date’ field contains enough information to conclude whether or
not a patient will have a severe illness, and thus predicts, incorrectly (but nonetheless confidently), that no new
patients can possibly be severely ill. Spotting this simplification, the user can take corrective measures such as
excluding the date field, or removing the old records.

4.5 Commercial applications

Recommender systems: a common problem with music recommender systems, such as the engines underlying
Pandora or iTunes radio, is that for an accurate model of your preferences to be built, the system needs to observe
many examples of your listening history. As a consequence, users of such systems typically abandon the service
before an accurate model is built, leading some to seek fast-converging estimates for recommendation systems,
with varying levels of success. For example, Herbrich et al. (2007) tackle the issue of e↵ectively recommending
opponents in multiplayer games. It is important that opponents are well-matched, otherwise the game is not fun
to play for either party. It is also important that these recommendations converge quickly, and that it is not
necessary for a player to play several mismatched games before the system is able to correctly estimate their skill.

None of these recommendation systems exposes the underlying uncertainty associated with each prediction;
by showing how the confidence of the system improves over time, and how its command of the domain of your
music preferences improves as it is exposed to new examples (i.e., visible indicators of progress and improvement),
the user may be more sympathetic to the amount of time required to properly train such systems.

Intelligent home devices: devices in our homes are getting increasingly intelligent. For instance, the Nest
thermostat1 learns your usage patterns throughout the day and begins to adjust itself. Similarly, certain refrig-
erators on the market will detect when you are running low on a particular item and place an online order on
your behalf. These devices may ostensibly be programmed through purpose-built Internet-of-Things languages,
such as IFTTT,2 however, the primary programming interfaces many of these devices will have is through direct
interaction, so that these interfaces can learn over time. In these situations, it can be quite important for the
system to be able to express parts of its cognition to the user.

Driverless vehicles: the prospect of an autonomous car navigating its passengers past a complex array of
obstacles at great speed evokes a visceral fear and suspicion, despite the fact that a tireless, emotionless controller
with nanosecond reaction times can be orders of magnitude safer than human driving. Part of the reason for this
reaction is that their interfaces have thus far been presented as completely opaque; the AI is portrayed to be in
1
https://nest.com/thermostat/life-with-nest-thermostat/ (last accessed July 15, 2015)

2
https://ifttt.com/wtf (last accessed July 15, 2015)



complete control and the passengers have no intervention in its decision making process. Through metamodels of
confidence, a driverless car might be able to identify situations where it defers to the judgment of a human driver.
Similarly, through metamodels of command, the car might be able to identify road and scenery types which it
had not previously encountered, and alert the driver to this.

5 Conclusion

I have discussed how we are undergoing a paradigm shift in programming, where the dominant mode of program-
ming has moved from one with well-definable mental models to one without. This is accompanied by a movement
from a direct, explicit information channel (the program) to an indirect, implicit, meta-information channel (about
the program). Previous work in explanatory debugging and interactive machine learning has shown several dif-
ferent items which may be present in these meta-information channels, elevating our interaction with programs
to a status resembling dialogue. To this channel, I have proposed a fundamental addition: models of machine
metacognition. Unlike previous frameworks, mine is grounded in the engineering requirements for providing such
types of information for intelligent systems.

I have argued for the utility and primacy of three models of machine self-metacognition: confidence in a
given output, command of the problem domain, and complexity of the decision making process in producing
a given output. I have presented some concrete suggestions for how such metamodels might be computed for
popular machine learning algorithms. I have suggested how metamodel substitution may allow us to explain
complex algorithms using simpler ones as metaphors. I have postulated a link between metamodels and meta-
interaction. Finally, using examples from the literature in interactive machine learning and end-user debugging,
I have demonstrated how these metamodels can enrich man-machine dialogue.

Acknowledgements

Many thanks to Alan Blackwell for his guidance on writing this paper and his proofreading of drafts at various
levels of completion. Thanks to Cecily Morrison for recommending some of the relevant literature. My PhD
is funded through an industrial CASE studentship sponsored by BT Research and Technology, and also by a
premium studentship from the University of Cambridge Computer Laboratory.



References

Amershi, S., Fogarty, J., Kapoor, A., & Tan, D. (2009). Overview based example selection in
end user interactive concept learning. In Proceedings of the 22nd annual ACM symposium on
User interface software and technology (pp. 247–256).

Amershi, S., Fogarty, J., Kapoor, A., & Tan, D. S. (2011). E↵ective end-user interaction with
machine learning. In AAAI.

Baum, E. B., & Lang, K. (1992). Query learning can work poorly when a human oracle is used.
In International joint conference on neural networks (Vol. 8).

Behrisch, M., Korkmaz, F., Shao, L., & Schreck, T. (2014). Feedback-driven interactive ex-
ploration of large multidimensional data supported by visual classifier. In Visual Analytics
Science and Technology (VAST), 2014 IEEE Conference on (pp. 43–52).

Blackwell, A. F. (2015). Interacting with an inferred world. In Submission under review for the
Decennial Aarhus conference.

Brown, E. T., Liu, J., Brodley, C. E., & Chang, R. (2012). Dis-function: Learning distance
functions interactively. In Visual Analytics Science and Technology (VAST), 2012 IEEE
Conference on (pp. 83–92).

Carlin, B. P., & Gelfand, A. E. (1990). Approaches for empirical bayes confidence intervals.
Journal of the American Statistical Association, 85 (409), 105–114.

Chryssolouris, G., Lee, M., & Ramsey, A. (1996). Confidence interval prediction for neural
network models. Neural Networks, IEEE Transactions on, 7 (1), 229–232.

Cohn, D. A., Ghahramani, Z., & Jordan, M. I. (1996). Active learning with statistical models.
Journal of artificial intelligence research.

Cooper, G. F., Aliferis, C. F., Ambrosino, R., Aronis, J., Buchanan, B. G., Caruana, R., . . .
others (1997). An evaluation of machine-learning methods for predicting pneumonia mortality.
Artificial intelligence in medicine, 9 (2), 107–138.

Eddy, S. R. (2004). What is a hidden markov model? Nature biotechnology , 22 (10), 1315–1316.
Fails, J. A., & Olsen, D. R. (2003). Interactive machine learning. Proceedings of the 8th
international conference on Intelligent user interfaces - IUI ’03 , 39. doi: 10.1145/604050
.604056

Fiebrink, R., Cook, P. R., & Trueman, D. (2011). Human model evaluation in interactive su-
pervised learning. Proceedings of the 2011 annual conference on Human factors in computing
systems - CHI ’11 , 147. doi: 10.1145/1978942.1978965

Fogarty, J., Tan, D., Kapoor, A., & Winder, S. (2008). Cueflik: interactive concept learning in
image search. In Proceedings of the sigchi conference on human factors in computing systems
(pp. 29–38).

Gittins, J., Glazebrook, K., & Weber, R. (2011). Multi-armed bandit allocation indices. John
Wiley & Sons.

González-Rubio, J., Ortiz-Mart́ınez, D., & Casacuberta, F. (2010). Balancing User E↵ort and
Translation Error in Interactive Machine translation via confidence measures. Proceedings of
the ACL 2010 Conference Short Papers, Uppsala, Sweden, 173 (July), 173–177.

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: a
cognitive dimensions framework. Journal of Visual Languages & Computing , 7 (2), 131–174.

Groce, A., Kulesza, T., Zhang, C., Shamasunder, S., Burnett, M., Wong, W.-K., . . . McIntosh,
K. (2014). You Are the Only Possible Oracle: E↵ective Test Selection for End Users of
Interactive Machine Learning Systems. IEEE Transactions on Software Engineering , 40 (3),
307–323. doi: 10.1109/TSE.2013.59

Hao, M. C., Dayal, U., Keim, D. A., Morent, D., & Schneidewind, J. (2007). Intelligent
visual analytics queries. In Visual Analytics Science and Technology (VAST), 2007 IEEE
Symposium on (pp. 91–98).



Herbrich, R., Minka, T., & Graepel, T. (2007). TrueskillTM: A bayesian skill rating system.
In B. Schölkopf, J. Platt, & T. Ho↵man (Eds.), Advances in neural information processing
systems 19 (pp. 569–576). MIT Press. Retrieved from http://papers.nips.cc/paper/

3079-trueskilltm-a-bayesian-skill-rating-system.pdf

Herlocker, J. L., Konstan, J. A., & Riedl, J. (2000). Explaining collaborative filtering recom-
mendations. In Proceedings of the 2000 ACM conference on Computer supported cooperative
work (pp. 241–250).

Horvitz, E. (1999). Principles of mixed-initiative user interfaces. In Proceedings of the SIGCHI
conference on Human factors in computing systems the CHI is the limit - CHI ’99 (pp.
159–166). New York, New York, USA: ACM Press. doi: 10.1145/302979.303030

Kalkanis, G. (1993). The application of confidence interval error analysis to the design of
decision tree classifiers. Pattern Recognition Letters, 14 (5), 355–361.

Ko, A. J., & Myers, B. A. (2004). Designing the whyline: a debugging interface for asking
questions about program behavior. In Proceedings of the SIGCHI conference on Human
factors in computing systems (pp. 151–158).

Ko, A. J., Myers, B. A., Rosson, M. B., Rothermel, G., Shaw, M., Wiedenbeck, S., . . . Lieber-
man, H. (2011, April). The state of the art in end-user software engineering. ACM Computing
Surveys, 43 (3), 1–44. doi: 10.1145/1922649.1922658

Kontschieder, P., Dorn, J. F., Morrison, C., Corish, R., Zikic, D., Sellen, A., . . . others (2014).
Quantifying progression of multiple sclerosis via classification of depth videos. In Medical
image computing and computer-assisted intervention–miccai 2014 (pp. 429–437). Springer.

Kulesza, T., Amershi, S., Caruana, R., Fisher, D., & Charles, D. (2014). Structured labeling
for facilitating concept evolution in machine learning. In Proceedings of the 32nd annual acm
conference on human factors in computing systems (pp. 3075–3084).

Kulesza, T., Burnett, M., Wong, W.-k., & Stumpf, S. (2015). Principles of Explanatory Debug-
ging to Personalize Interactive Machine Learning. In Proceedings of the 20th international con-
ference on intelligent user interfaces - iui ’15 (pp. 126–137). doi: 10.1145/2678025.2701399

Kulesza, T., Stumpf, S., Burnett, M., Yang, S., Kwan, I., & Wong, W.-K. (2013). Too much,
too little, or just right? Ways explanations impact end users’ mental models. In Proceedings
of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC (pp.
3–10). doi: 10.1109/VLHCC.2013.6645235

Kulesza, T., Stumpf, S., Wong, W.-K., Burnett, M. M., Perona, S., Ko, A., & Oberst, I. (2011).
Why-oriented end-user debugging of naive bayes text classification. ACM Transactions on
Interactive Intelligent Systems (TiiS), 1 (1), 2.

Kulesza, T., Wong, W.-K., Stumpf, S., Perona, S., White, R., Burnett, M. M., . . . Ko, A. J.
(2009). Fixing the program my computer learned: Barriers for end users, challenges for the
machine. In Proceedings of the 14th international conference on intelligent user interfaces
(pp. 187–196).

Laird, N. M., & Louis, T. A. (1987). Empirical bayes confidence intervals based on bootstrap
samples. Journal of the American Statistical Association, 82 (399), 739–750.

Lim, B., & Dey, A. (2009). Assessing demand for intelligibility in context-aware applications.
Proceedings of the 11th international conference on Ubiquitous computing , 195. doi: 10.1145/
1620545.1620576

Lou, Y., Caruana, R., & Gehrke, J. (2012). Intelligible models for classification and regression.
In Proceedings of the 18th acm sigkdd international conference on knowledge discovery and
data mining (pp. 150–158).

Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013). Accurate intelligible models with
pairwise interactions. In Proceedings of the 19th acm sigkdd international conference on
knowledge discovery and data mining (pp. 623–631).

McSherry, D. (2005). Explanation in recommender systems. Artificial Intelligence Review ,
24 (2), 179–197.



Nguyen, A., Yosinski, J., & Clune, J. (2015). Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. Computer Vision and Pattern Recognition
(CVPR ’15), IEEE .

Pu, P., & Chen, L. (2006). Trust building with explanation interfaces. In Proceedings of the
11th international conference on intelligent user interfaces (pp. 93–100).

Rothermel, G., Li, L., DuPuis, C., & Burnett, M. (1998). What you see is what you test: A
methodology for testing form-based visual programs. In Proceedings of the 20th international
conference on software engineering (pp. 198–207). Washington, DC, USA: IEEE Computer
Society.

Sarkar, A., Blackwell, A. F., Jamnik, M., & Spott, M. (2014, July). Teach and try: A simple
interaction technique for exploratory data modelling by end users. In Visual Languages and
Human-Centric Computing (VL/HCC), 2014 IEEE Symposium on (pp. 53–56). IEEE. doi:
10.1109/VLHCC.2014.6883022

Savitha, R., Suresh, S., & Sundararajan, N. (2012). Metacognitive learning in a fully complex-
valued radial basis function neural network. Neural Computation, 24 (5), 1297–1328.

Settles, B. (2010). Active learning literature survey. University of Wisconsin, Madison, 52 (55-
66), 11.

Simon, H. A. (1996). The sciences of the artificial (Vol. 136). MIT press.
Smith, S. J., Bourgoin, M. O., Sims, K., & Voorhees, H. L. (1994). Handwritten character classi-
fication using nearest neighbor in large databases. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 16 (9), 915–919.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R.
(2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 .

Tintarev, N., & Mastho↵, J. (2007). A survey of explanations in recommender systems. In
Data Engineering Workshop, 2007 IEEE 23rd International Conference on (pp. 801–810).

Ware, M., Frank, E., Holmes, G., Hall, M., & Witten, I. H. (2001). Interactive machine learning:
letting users build classifiers. International Journal of Human-Computer Studies, 55 (3), 281–
292.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. Unpublished doctoral dissertation,
University of Cambridge England.

Weintraub, M., Beaufays, F., Rivlin, Z., Konig, Y., & Stolcke, A. (1997). Neural-network based
measures of confidence for word recognition. In Acoustics, speech, and signal processing, ieee
international conference on (Vol. 2, pp. 887–887).

Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook, C., . . . Rothermel, G.
(2003). Harnessing curiosity to increase correctness in end-user programming. In Proceedings
of the SIGCHI conference on Human factors in computing systems (pp. 305–312).

Zhang, L., & Luh, P. B. (2005). Neural network-based market clearing price prediction and con-
fidence interval estimation with an improved extended kalman filter method. Power Systems,
IEEE Transactions on, 20 (1), 59–66.


