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Problem
• MildlyInappropriateCatAppreciationSociety.com 

receives thousands of cat pictures a minute 

• Strict quality control requirements mean that 
repeated submissions are frowned upon 

• How do we quickly detect if a picture already exists 
in the database? 

One might say we are looking for duplicats.



Solution 1: use the catabase
• Equivalent to time complexity of lookup operation 

• E.g.  O(log(n)) for binary searching a sorted list 

!

[      ,     ,    ,    ,     ,    ,...]    
• Problem: slow 

• Problem: large data transfer overhead



Solution 2: hash table
!

!

!

• O(1) lookup 

• Still 2n space for n-bit hash function 

• Exact solution — can we do better?

00000000 0

00000001 0

… …

01100101  

… …

11111111 0

h(      )



Bloom filter
• An extension of the hash table idea 

• Multiple hashes index into a bit vector
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• P(false positive) = 
m-bit vector, k hashes, n elements 

Bloom filter properties

• no false negatives 

• can be much smaller & faster than hash table

image credit: http://www.javamex.com/tutorials/
collections/bloom_filter_false_positives_graph.shtml

http://www.javamex.com/tutorials/collections/bloom_filter_false_positives_graph.shtml


Raw data

Exact query: Sorted IDs or Hash Table

Bloom filter with 4% error 0.6 MB

4 MB

40 MB

Cardinality estimation / membership query
Dataset of 32-bit integers with107 elements,106 distinct values



Quiz!

This bloom filter contains a list of English words. 

The (rather terrible) hashes are: 

• h1 = number of letters in the word  

• h2 = number of vowels in the word 

Is the word “ailurophilia” present in the list?

1 1 0 1 0 0 0 1 1 0 0 1
index: 1 122 3 4 5 6 7 8 9 10 11



!
Fed up with the tyranny of 

MildlyInappropriateCatAppreciationSociety.com, 
rebels set up their own website which allows 

reposts. 
!

The website grows rapidly in popularity, but 
MICAS claims that their website still has more 

unique content. 
  

Problem:  
How can the rebels keep a fast, live count of 
their distinct cats and prove MICAS wrong? 



Solution 1: hash table
!

!

!

!

• 2n space for n-bit hash function 

• Exact solution — can we do better?
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Linear counter
• An extension of the hash table idea 

• A single hash indexes into a bit vector
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Linear counter properties
m bits limits standard error to ϵ 

t = n/m, where n is true cardinality

• this can be much smaller than a 
hash table! 
!

• easy to merge distributed counters 
!

• can we do better?



Raw data

Exact query: Sorted IDs or Hash Table

Bloom filter with 4% error

Linear counter 4% error 0.125 MB

0.6 MB

4 MB

40 MB

Cardinality estimation
Dataset of 32-bit integers with107 elements,106 distinct values



A different approach
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20÷1 = 20

• Want to count distinct integers 
!
• If integers are uniformly distributed, 

can estimate cardinality as max÷min 
!
• Super cheap, super fast, super rough



LogLog counting
• A well-designed hash function can transform any 

dataset into a uniformly distributed one 

• Some estimators work better than others 

• In particular, sequences of leading 0s 

• If k is the maximum number of leading 0s observed 
so far, 2k is a reasonable cardinality estimate



LogLog counter

• Hash each new item as it comes in 

• If the hash has more leading zeros (higher k) than 
current maximum, store it 

• Compute cardinality as 2k

0 0 0 0 1 0

h(i1) = 011001 
h(i2) = 001011 
h(i3) = 000010 
h(i4) = 001001 
h(i5) = 010101 

…



• Use m “buckets”, hash each item into a single 
bucket, and average k for a better estimate: 

    (α ≅0.8, reduces bias)  
 

• Get better estimate by removing outliers

LogLog counting  with 
Stochastic Averaging



LogLog counter properties
ϵ is standard error  

m buckets, each at least size log(log(n)) 
n is true cardinality

• Very small, reasonably accurate 
• Inherently parallelisable



Raw data

Exact query: Sorted IDs or Hash Table

Bloom filter with 4% error

Linear counter 4% error

LogLog counter 4% error 0.002 MB

0.125 MB

0.6 MB

4 MB

40 MB

Cardinality estimation
Dataset of 32-bit integers with107 elements,106 distinct values



Exact query: Sorted IDs or Hash Table

Bloom filter with 4% error

Linear counter 4% error

LogLog counter 4% error 0.002 MB

0.125 MB

0.6 MB

4 MB

Cardinality estimation
Dataset of 32-bit integers with107 elements,106 distinct values



Bloom filter with 4% error

Linear counter 4% error

LogLog counter 4% error 0.002 MB

0.125 MB

0.6 MB

Cardinality estimation
Dataset of 32-bit integers with107 elements,106 distinct values



Quiz!

• Approximately how many distinct elements have 
been recorded by this LogLog counter? 

• Use the formula: m × 2(average k) 
(m = buckets, k = number of leading 0s)

0 0 1 0 1 1

0 0 0 0 1 0

bucket 1

bucket 2



!
The rebel website can now quickly establish 

whether they have more unique cats. 
!

However, they would now like to know which cats 
are rapidly growing in popularity. 

  
Problem:  

How can the rebels keep a fast, live count of the 
frequencies of their cats? 



One might say we are trying to graph the long tail of cats.



Count-min sketch
• “Sketch” because it is an approximate summary 
• use vectors of integer counters that are 
themselves hash tables.

• Frequency of an item is upper-bounded by the 
smallest of any of its counters

hash 1 0 1 0 0 0 0 0 0 2 0
hash 2 0 0 1 0 0 0 2 0 0 0
hash 3 0 0 0 0 2 1 0 0 0 0
hash 4 0 0 0 0 3 0 0 0 0 0
hash 5 0 0 0 0 0 0 0 0 2 1

+1 +1

+1



Count-min sketch properties

• ε = absolute overestimation (underestimation is impossible) 
• For n total entries, d hashes, each w elements wide. 
!
Frequency estimation is a core component of powerful 
machine learning techniques, e.g. bayes nets, naive bayes, 
HMMs, etc.

Can we do better?



Count-mean-min sketch
hash 1 0 1 0 0 0 0 0 0 2 0
hash 2 0 0 1 0 0 0 2 0 0 0
hash 3 0 0 0 0 2 1 0 0 0 0
hash 4 0 0 0 0 3 0 0 0 0 0
hash 5 0 0 0 0 0 0 0 0 2 1

+1 +1

+1

• Can attempt to compensate for collisions 
• Estimate “noise” of each row as average of all counters  

except element of interest 
• Subtract row noise from each counter 
• Return min(median denoised counter, min counter)

Performs better in the face of many collisions.



Raw data

Exact frequency: Count-value pairs

Count-min sketch 4% error 0.048 MB

7 MB

40 MB

Frequency estimation estimation
Dataset of 32-bit integers with107 elements,106 distinct values



Quiz!

This is a count-min sketch of English words. 

The (same terrible) hashes are: 

• h1 = number of letters in the word  

• h2 = number of vowels in the word (y is not a vowel) 

At most how many times has “kittylove” appeared?

3 0 2 1 0 1 0 3 1 2 0 1
0 1 0 2 0 0 1 0 3 2 1 1

index: 1 12
h1

h2

2 3 4 5 6 7 8 9 10 11



In summary
Technique Purpose

Bloom filter membership query

Linear counting cardinality estimation

LogLog counting

Count-min sketch frequency estimation

Count-mean-min sketch



There is a whole wide world 
of probabilistic techniques

• Skip lists are fast data structures with O(log n) insert, delete 
and lookup 

• Stream-summary can record top-k frequent items in 
essentially constant space 

• Reservoir sampling can pick n items out of an infinite stream, 
with each item having equal probability of being picked 

• An array of count-min sketches can be used to calculate 
range queries (e.g. find all x such that p < x < q) 

• And many more!


