Research Students’
| ecture Series 2015




Or: applied probabilistic algorithms in 5 easy pieces

Advait Sarkar
advait.sarkar@cl.cam.ac.uk
Research Students’ Lecture Series Michaelmas 2015



‘Owning a cat
may mcrease  the chance
of suicide.”

“,‘\“\ g:; *
é \\-— ‘\\ \‘\\‘\
S0 IuBEﬂAME ALOAF"




Problem

 MildlylnappropriateCatAppreciationSociety.com
receives thousands of cat pictures a minute

e Strict quality control requirements mean that
repeated submissions are frowned upon

 How do we quickly detect if a picture already exists
in the database”

One might say we are looking for duplicats.



Solution 1: use the catabase

* Equivalent to time complexity of lookup operation

« £E.g. O(log(n)) for binary searching a sorted list

e Problem: slow

* Problem: large data transfer overhead



Solution 2: hash table

00000000 0
00000001 0
01100101 M
®
0(1) |OOkup 11111111 0

o Still 2" space for n-bit hash function

e Exact solution — can we do better?



Bloom filter

e An extension of the hash table idea

 Multiple hashes index into a bit vector

add N1

-
w
O |k |O|lO|O (R |O|O|O |k |O|O (R |O|O




Bloom filter properties

1] kn k . I
* P(false positive) = (1 [15_ ) < (1-etm)
m-bit vector, k hashes, n elements

100

Bloom filter false positive rate

80 2*14 random strings with 64-bit hash codes
w
3
2 60 —1
Q.
3 -2
o 3
2 -4  hash

40 —2 code

= |
20
\ image credit: http://www.javamex.com/tutorials/
e Ry o - collections/bloom_filter_false_positives_graph.shtml

0 et T —
24 bits 2*5bits 2*6bits 2*7bits 28 bits 2*M9bits 2*20 bits  2*21 bits  2*22 bits  2*23 bits

BitSet allocated

* no false negatives

e can be much smaller & faster than hash table


http://www.javamex.com/tutorials/collections/bloom_filter_false_positives_graph.shtml

Cardinality estimation / membership query

Dataset of 32-bit integers with107 elements, 106 distinct values

40 MB

Raw data

Exact query: Sorted IDs or Hash Table 4 MB

Bloom filter with 4% error £0.6 MB



Quiz!

1 1 0 1 0 0 0 1 1 O O 1
ndex:1 2 3 4 &5 ©6 /7 8 9 10 11 12

This bloom filter contains a list of English words.
The (rather terrible) hashes are:
* 1 = number of letters in the word

e h2 = number of vowels in the word

s the word “allurophilia” presentin the list?



rebels set up their own welbsite which aIIows
reposts.

The website grows rapidly in popularity, but

MICAS claims that their website still has more
unigue content.

Problem:
How can the rebels keep a tast, live count of
their distinct cats and prove MICAS wrong?




Solution 1: hash table

00000000 0
00000001 0
01100101 ™ 1
11111111 0

e 20 space for n-bit hash function

e Exact solution — can we do better?



| Inear counter

e An extension of the hash table idea

* A single hash indexes into a bit vector

Max likelihood cardinality
estimate is given by

. # zero entries
n=—mln
m

add

O |O |0 |0 |0 (k|0 |0 |0 (k|0 |0 |+ |O (O




|_Inear counter properties

el —t—1 m bits limits standard error to €
(et)? t = n/m, where n is true cardinality

m >

e this can be much smaller than a
hash table!

* easy to merge distributed counters

e can we do better?



Cardinality estimation

Dataset of 32-bit integers with107 elements, 106 distinct values

40 MB

Raw data

Exact query: Sorted IDs or Hash Table 4 MB
Bloom filter with 4% error §0.6 MB

Linear counter 4% error |0.125 MB




A different approach

. 20+1=20

12 3 45 6 7 8 910111213 141516 17 18 19 20

* \Want to count distinct integers

* |t integers are uniformly distributed,
can estimate cardinality as max-min

e Super cheap, super fast, super rough



| oglL.og counting

A well-designed hash function can transform any
dataset into a uniformly distributed one

Some estimators work better than others
In particular, sequences of leading Os

It kis the maximum number of leading 0s observed
so far, 2k is a reasonable cardinality estimate



L ogLog counter

h(ii) = 011001 ~
h(iz) = 001011 -5
2T >3
h(is) = 001001
h(is) = 010101

e Hash each new item as it comes In

* |[f the hash has more leading zeros (higher k) than
current maximum, store it

 Compute cardinality as 2%



LoglLog counting with
Stochastic Averaging

 Use m "buckets”, hash each item into a single
bucket, and average k tfor a better estimate:

Ozka (a =0.8, reduces bias)

* (Get better estimate by removing outliers



| oglL.og counter properties

13 € Is standard error
€ m buckets, each at least size log(log(n))
m nis true cardinality

* Very small, reasonably accurate
* |nherently parallelisable



Cardinality estimation

Dataset of 32-bit integers with107 elements, 106 distinct values

Raw data

Exact query: Sorted IDs or Hash Table 4 MB
Bloom filter with 4% error §0.6 MB

Linear counter 4% error |0.125 MB

LoglLog counter 4% error |0.002 MB



Cardinality estimation

Dataset of 32-bit integers with107 elements, 106 distinct values
4 MB

Exact query: Sorted IDs or Hash Table

Bloom filter with 4% error

Linear counter 4% error 0.125 MB

LogLog counter 4% error |0.002 MB




Cardinality estimation

Dataset of 32-bit integers with107 elements, 106 distinct values

Bloom filter with 4% error

0.6 MB

Linear counter 4% error

LogLog counter 4% error |0.002 MB




bucket1 | 0 | 0 [ 1 | 0 | 1 | 1

bucket2 | ol o | 0o | 0| 1|0

 Approximately how many distinct elements have
been recorded by this LoglLog counter?

* Use the formula: M x 2(average k)
(m = buckets, k = number of leading 0s)




The rebel website can now quickly establish
whether they have more unigue cats.

"However, they would now like to know which cats
are rapidly growing in popularity.

a7
W | oA .
v i
i1 ’
WV
\
) :
‘ \ e
>
—
24 i

= =

: T\

M

| Problem:
' How can the rebels keep a fast, live count of the ==
frequencies of their cats?




One might say we are trying to graph the long tail of cats.




Count-min sketch

e “Sketch” because it is an approximate summary
* Use vectors of integer counters that are
themselves hash tables.

+1 +1
0 1.0 0000 0 240 l"’&‘ -“’@
0 0 1.0 60 2.0 00
0 00 0 21,0000 +1
0 00035000 0 04
0 000O0O0OGOG 0271

* Frequency of an item Is upper-bounded by the
smallest of any of its counters



Count-min sketch properties

2N
e < —
W
1 d
with probability 0 =1 — (§>

* £ = absolute overestimation (underestimation is impossible)
* For ntotal entries, d hashes, each w elements wide.

—-requency estimation is a core component of powerful
machine learning techniques, e.g. bayes nets, naive bayes,
HMMSs, etc.

Can we do better?



Count-mean-min sketch

0 1.0 0000 0 240
0 0 1.0 0.0 2:0 00
0 000 2+1T:000.0
0 000 3500000
0 000 0O0O0O0Z2 1

Can attempt to compensate for collisions

Estimate “noise” of each row as average of all counters
except element of interest

Subtract row noise from each counter

Return min(median denoised counter, min counter)

Performs better in the face of many collisions.



Frequency estimation estimation

Dataset of 32-bit integers with107 elements, 106 distinct values

Raw data

40 MB

Exact frequency: Count-value pairs

Count-min sketch 4% error {0,048 MB




ndex:1 2 3 4 5 6 7 8 9 10 11 12
h113 0 2 1 0 1 0 3 1 2 0 1
h2 1 0 1 0 2 0 O 1 O 3 2 1 1

This is a count-min sketch of English words.
The (same terrible) hashes are:
* h1 = number of letters in the word

e N2 = number of vowels in the word (y is not a vowel)

At most how many times has “ki1ttylove” appeared?



N summary

Technique Purpose

Bloom filter membership query

Linear counting cardinality estimation

LoglLog counting

Count-min sketch frequency estimation

Count-mean-min sketch




There Is a whole wide worlad
of probabilistic technigues

Skip lists are fast data structures with O(log n) insert, delete
and lookup

Stream-summary can record top-k frequent items in
essentially constant space

Reservoir sampling can pick n items out of an infinite stream,
with each item having equal probability of being picked

An array of count-min sketches can be used to calculate
range queries (e.q. find all x such that p < x < g)

And many more!



