
Research Students’
Lecture Series 2015

Analyse your big data
with this one weird

probabilistic approach!
Or: applied probabilistic algorithms in 5 easy pieces

Advait Sarkar
advait.sarkar@cl.cam.ac.uk

Research Students’ Lecture Series Michaelmas 2015

Problem
• MildlyInappropriateCatAppreciationSociety.com

receives thousands of cat pictures a minute

• Strict quality control requirements mean that
repeated submissions are frowned upon

• How do we quickly detect if a picture already exists
in the database?

One might say we are looking for duplicats.

Solution 1: use the catabase
• Equivalent to time complexity of lookup operation

• E.g. O(log(n)) for binary searching a sorted list

!

[, , , , , ,...]
• Problem: slow

• Problem: large data transfer overhead

Solution 2: hash table
!

!

!

• O(1) lookup

• Still 2n space for n-bit hash function

• Exact solution — can we do better?

00000000 0

00000001 0

… …

01100101

… …

11111111 0

h()

Bloom filter
• An extension of the hash table idea

• Multiple hashes index into a bit vector
0

0

1

0

0

1

0

0

0

1

0

0

0

1

0

h1

h2

h3

h4

add
query

x

• P(false positive) = 
m-bit vector, k hashes, n elements

Bloom filter properties

• no false negatives

• can be much smaller & faster than hash table

image credit: http://www.javamex.com/tutorials/
collections/bloom_filter_false_positives_graph.shtml

http://www.javamex.com/tutorials/collections/bloom_filter_false_positives_graph.shtml

Raw data

Exact query: Sorted IDs or Hash Table

Bloom filter with 4% error 0.6 MB

4 MB

40 MB

Cardinality estimation / membership query
Dataset of 32-bit integers with107 elements,106 distinct values

Quiz!

This bloom filter contains a list of English words.

The (rather terrible) hashes are:

• h1 = number of letters in the word

• h2 = number of vowels in the word

Is the word “ailurophilia” present in the list?

1 1 0 1 0 0 0 1 1 0 0 1
index: 1 122 3 4 5 6 7 8 9 10 11

!
Fed up with the tyranny of

MildlyInappropriateCatAppreciationSociety.com,
rebels set up their own website which allows

reposts.
!

The website grows rapidly in popularity, but
MICAS claims that their website still has more

unique content.

Problem:
How can the rebels keep a fast, live count of
their distinct cats and prove MICAS wrong?

Solution 1: hash table
!

!

!

!

• 2n space for n-bit hash function

• Exact solution — can we do better?

00000000 0

00000001 0

… …

01100101 1

… …

11111111 0

h()

Linear counter
• An extension of the hash table idea

• A single hash indexes into a bit vector
0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

h1
add

h1

h1

Max likelihood cardinality
 estimate is given by

Linear counter properties
m bits limits standard error to ϵ

t = n/m, where n is true cardinality

• this can be much smaller than a
hash table!
!

• easy to merge distributed counters
!

• can we do better?

Raw data

Exact query: Sorted IDs or Hash Table

Bloom filter with 4% error

Linear counter 4% error 0.125 MB

0.6 MB

4 MB

40 MB

Cardinality estimation
Dataset of 32-bit integers with107 elements,106 distinct values

A different approach
0

1
2

3
4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20÷1 = 20

• Want to count distinct integers
!
• If integers are uniformly distributed,

can estimate cardinality as max÷min
!
• Super cheap, super fast, super rough

LogLog counting
• A well-designed hash function can transform any

dataset into a uniformly distributed one

• Some estimators work better than others

• In particular, sequences of leading 0s

• If k is the maximum number of leading 0s observed
so far, 2k is a reasonable cardinality estimate

LogLog counter

• Hash each new item as it comes in

• If the hash has more leading zeros (higher k) than
current maximum, store it

• Compute cardinality as 2k

0 0 0 0 1 0

h(i1) = 011001
h(i2) = 001011
h(i3) = 000010
h(i4) = 001001
h(i5) = 010101

…

• Use m “buckets”, hash each item into a single
bucket, and average k for a better estimate:

 (α ≅0.8, reduces bias)  
 

• Get better estimate by removing outliers

LogLog counting with
Stochastic Averaging

LogLog counter properties
ϵ is standard error

m buckets, each at least size log(log(n))
n is true cardinality

• Very small, reasonably accurate
• Inherently parallelisable

Raw data

Exact query: Sorted IDs or Hash Table

Bloom filter with 4% error

Linear counter 4% error

LogLog counter 4% error 0.002 MB

0.125 MB

0.6 MB

4 MB

40 MB

Cardinality estimation
Dataset of 32-bit integers with107 elements,106 distinct values

Exact query: Sorted IDs or Hash Table

Bloom filter with 4% error

Linear counter 4% error

LogLog counter 4% error 0.002 MB

0.125 MB

0.6 MB

4 MB

Cardinality estimation
Dataset of 32-bit integers with107 elements,106 distinct values

Bloom filter with 4% error

Linear counter 4% error

LogLog counter 4% error 0.002 MB

0.125 MB

0.6 MB

Cardinality estimation
Dataset of 32-bit integers with107 elements,106 distinct values

Quiz!

• Approximately how many distinct elements have
been recorded by this LogLog counter?

• Use the formula: m × 2(average k) 
(m = buckets, k = number of leading 0s)

0 0 1 0 1 1

0 0 0 0 1 0

bucket 1

bucket 2

!
The rebel website can now quickly establish

whether they have more unique cats.
!

However, they would now like to know which cats
are rapidly growing in popularity.

Problem:

How can the rebels keep a fast, live count of the
frequencies of their cats?

One might say we are trying to graph the long tail of cats.

Count-min sketch
• “Sketch” because it is an approximate summary
• use vectors of integer counters that are
themselves hash tables.

• Frequency of an item is upper-bounded by the
smallest of any of its counters

hash 1 0 1 0 0 0 0 0 0 2 0
hash 2 0 0 1 0 0 0 2 0 0 0
hash 3 0 0 0 0 2 1 0 0 0 0
hash 4 0 0 0 0 3 0 0 0 0 0
hash 5 0 0 0 0 0 0 0 0 2 1

+1 +1

+1

Count-min sketch properties

• ε = absolute overestimation (underestimation is impossible)
• For n total entries, d hashes, each w elements wide.
!
Frequency estimation is a core component of powerful
machine learning techniques, e.g. bayes nets, naive bayes,
HMMs, etc.

Can we do better?

Count-mean-min sketch
hash 1 0 1 0 0 0 0 0 0 2 0
hash 2 0 0 1 0 0 0 2 0 0 0
hash 3 0 0 0 0 2 1 0 0 0 0
hash 4 0 0 0 0 3 0 0 0 0 0
hash 5 0 0 0 0 0 0 0 0 2 1

+1 +1

+1

• Can attempt to compensate for collisions
• Estimate “noise” of each row as average of all counters  

except element of interest
• Subtract row noise from each counter
• Return min(median denoised counter, min counter)

Performs better in the face of many collisions.

Raw data

Exact frequency: Count-value pairs

Count-min sketch 4% error 0.048 MB

7 MB

40 MB

Frequency estimation estimation
Dataset of 32-bit integers with107 elements,106 distinct values

Quiz!

This is a count-min sketch of English words.

The (same terrible) hashes are:

• h1 = number of letters in the word

• h2 = number of vowels in the word (y is not a vowel)

At most how many times has “kittylove” appeared?

3 0 2 1 0 1 0 3 1 2 0 1
0 1 0 2 0 0 1 0 3 2 1 1

index: 1 12
h1

h2

2 3 4 5 6 7 8 9 10 11

In summary
Technique Purpose

Bloom filter membership query

Linear counting cardinality estimation

LogLog counting

Count-min sketch frequency estimation

Count-mean-min sketch

There is a whole wide world
of probabilistic techniques

• Skip lists are fast data structures with O(log n) insert, delete
and lookup

• Stream-summary can record top-k frequent items in
essentially constant space

• Reservoir sampling can pick n items out of an infinite stream,
with each item having equal probability of being picked

• An array of count-min sketches can be used to calculate
range queries (e.g. find all x such that p < x < q)

• And many more!

