
Page 49

The impact of syntax colouring on program comprehension

Advait Sarkar

Computer Laboratory, University of Cambridge
Cambridge, UK

advait.sarkar@cl.cam.ac.uk

Abstract. We present an empirical study investigating the effect of syntax highlighting on program
comprehension and its interaction with programming experience. Quantitative data was captured
from 10 human subjects using an eye tracker during a controlled, randomised, within-subjects
study. We observe that syntax highlighting significantly improves task completion time, and that
this effect becomes weaker with an increase in programming experience.

Keywords: POP-II.B. Program Comprehension; POP-III.D. Editors; POP-V.B. Eye-tracking

1 Introduction

Syntax colouring, commonly known as syntax highlighting, is a feature of some text editors which
colours lexical tokens in source code text according to a certain categorisation. An example of
how source code may look with and without syntax highlighting can be found in Figure 1.

Fig. 1. Left: code without highlighting. Right: same code with syntax highlighting.

Syntax highlighting is included in text editors on the premise that it makes working with
code easier. It is easier to spot certain kinds of syntactic bug with syntax colouring: for in-
stance, if string literals are assigned a unique colour, then an unclosed string is easy to spot
as all subsequent text until the next delimiter is coloured. It is important to note that syntax
highlighting is purely secondary notation (T. R. Green, 1989) meant for humans; it does not
affect the behaviour of the code.

Close attention has not yet been paid to whether syntax highlighting has any impact on the
speed, precision or ease with which a programmer can internalise a program’s semantics, i.e com-
prehend the program. A plausible intuition is that the improved readability and clearer structure
of syntax-highlighted code would make it “easier” to understand the behaviour of a program,
but the nature and degree of any such improvement has not previously been investigated.

In this study we establish whether source code syntax colouring has an effect on program
comprehension time, and furthermore investigate whether this effect varies by programming
experience. It is conceivable that a difference in comprehension speed might be attributable
to differences in eye fixation patterns on syntax-highlighted keywords, on the basis that visual
attention (focus on a particular location) triggers mental processes to comprehend or solve
a given task (Just & Carpenter, 1980). We conduct an eye-tracking study, explained in §2,
to substantiate this. These research objectives are formalised as hypotheses in §3. Finally, we
discuss our findings in §4.

Advait Sarkar
Proceedings of the 26th Annual Conference of the Psychology of Programming Interest Group (PPIG 2015) (pp. 49–58) 



Page 50

1.1 Previous work

Most previous work on colour in text has focused on English prose and not source code. Evidence
suggests that colouring tokens in text has no effect on the speed of visual search when the
colour of the target is unknown, but when the colour of the target is known, search times are
considerably smaller (B. F. Green & Anderson, 1956; Rubin, 1988). Colour has been found to
be useful for emphasising format and categorisation (Van Nes, 1986; Rubin, 1988). By contrast
to the corresponding research in print media, Hakala et al. found that syntax highlighting did
not have a significant impact on the speed of visual search (2006) onscreen.

Baecker (1988) studied aspects of typography with the specific purpose of enhancing source
code readability and comprehensibility. The author prepared short programs, varying several
aspects of the layout and typography, such as punctuation marks, kerning, and incorporation
of colour. The prepared program along with a questionnaire was presented to the participants
of the study. The impact of the improved layout on readability, comprehensibility, and recall
was measured as a function of the number of questions answered correctly and the time taken
to answer the questions. It was found that the improved layout increased the mean number of
correct answers by 11%, and that program readability was improved by 25%.

Bednarik and Tukiainen (2006) demonstrated the feasibility of using eye-tracking data to
study program comprehension, later using their methods to study the evolution of debugging
strategies (Bednarik & Tukiainen, 2008). Sharif and Maletic (2010) used eye tracking to study
the impact of identifier naming conventions (e.g. “camelCase” and “under_score”) on visual
search. Participants visually searched for a known identifier amongst a word cloud of similar
identifiers. Fixation counts and durations were used to measure “visual effort.” The underscore
style was found to require lower matching times and visual effort than the camel case style. A
summary of other work on eye-tracking in programming is given by Busjahn et al. (2014).

Gilmore and Green (1988) conducted a study wherein bugs were introduced into program
fragments containing simple loop and conditional structures. Some bugs were surface level, like
misspellings, and some were at a deeper level, like putting an assignment in the wrong place. A
highlighter was used in combination with indentation to highlight control structures, cognitive-
plan structures, both, or neither (a ‘cognitive plan’ relates to the programmer’s mental model for
the algorithmic structure of the program (Spohrer, Soloway, & Pope, 1985)). The participants
were to find the bugs. Participants found surface bugs faster with control-structure cues, and deep
bugs faster with cognitive-plan colouring. The authors conclude, importantly, that the added
information is only effective if it relates to the task. Although the colouring was not syntax-based,
this relates to our final conclusion that highlighting improves comprehension speed.

2 Experimental methodology

2.1 Comprehension task design

The comprehension task took the form of a mental execution, where the participants were given
a function definition and requested to compute its output for a given set of arguments.
An example task is presented below:

What is the output of da([1,2],[5,6],3)?

def da(list1, list2, x):

list3 = []

for j in list1:

for k in list2:

list3.append(j+k)

for e in list3:

if (e%x) == 0: print e

2



Page 51

To facilitate a within-subject comparison, each participant performed the task with pairs of
programs, where one of the pair had syntax highlighting, and the other did not. Tasks were
carefully designed to have a difficulty comparable to their paired counterparts by choosing pro-
grams that were of identical structure but with certain specific variations that had a major
impact on their semantics. These variations included reversing the direction of an inequality,
replacing additions with subtractions, or interchanging the arguments. Thus, tasks in a pair had
comparable difficulty but very little transferable knowledge, effectively minimising order effects.

The participants were given 3 pairs of comprehension tasks. From each pair, the task to be
highlighted was randomly chosen to reduce the likelihood of highlighting and difficulty becoming
artificially correlated. We ensured ample difference between each pair of tasks, and randomised
the order of tasks for each participant to account for repeated testing and order effects.
Since we intended to investigate the impact of programming experience, we chose to present the
tasks in a language in which the available participants, graduate computer science students, had
varying levels of experience. Python was the appropriate choice for two reasons:

1. The graduate students had a broad range of undergraduate backgrounds, so much variation in
Python experience could be expected: some participants had been taught extensive courses,
whereas some had never encountered Python prior to the experiment.

2. It is similar to other popular languages such as Java, C++, and even pseudocode, so a specific
lack of Python experience would not make the task impossible to complete.

Python differs in two ways from languages with which the participants are more likely to be
familiar: its use of indentation to indicate block structure, and its lack of explicit variable types.
Participants were made aware of both of these issues before they began the task. To avoid
datatype-related confusion, a uniform variable naming scheme was adopted in the tasks. For
example, integers were named x, y, etc. and lists were named list1, list2, etc.

A final consideration is the colouring scheme of the syntax highlighting. It was not within the
scope of this study to investigate the impact of different colouring schemes, although it would
make for interesting future work. We focus on token-level colouring, as opposed to block-level
colouring such as that proposed by Cigas (1990), since token-level colouring is far more prevalent
in practice. We used the Solarized1 palette, which has been designed for usability.

2.2 Eye-tracking apparatus

We used a Tobii2 X120 eye tracker, a video-based remote eye tracker that captures eye movements
using twin infrared cameras. No head gear is necessary. The tracker is placed on the desk directly
underneath the monitor. For optimal tracking, the tracker is configured to be aware of its location
with respect to the screen and of the screen’s dimensions and resolution. Sampling occurs at a
temporal resolution of 60Hz with a latency of 25-35ms and accuracy of the order of 0.5�. The
eye tracker compensates for head movement to some extent and is able to recover if the subject
temporarily looks away from the screen. The eye gaze data includes timestamps of fixations,
onscreen fixation coordinates, fixation durations, eye positions, pupil size, etc.

2.3 Measuring programming experience

The participants were asked to complete a questionnaire recording the following:

1. How long the participant has been programming.
2. A self-reported score from 1-10, 10 being “highly experienced”.
1 Solarized - Ethan Schoonover, http://ethanschoonover.com/solarized (as of June 15, 2015)
2 Tobii Eye-Tracking Research, http://www.tobii.com/en/eye-tracking-research/ (as of June 15, 2015)

3



Page 52

3. The participant’s self-estimated peer group decile (e.g. top 10%, top 20%, etc.)
4. For each language the participant has used (up to a maximum of 4):

– How long the participant has been using that language.
– How often the participant uses it.
– The largest or most complex program the participant has written in it.
– A self-reported proficiency score from 1-10, 10 being highly proficient.

Since programming experience is complex and multifaceted, it is impossible to measure along
an objective, interval scale. Thus, these records were used purely to establish an ordinal ranking
of participants by experience. The answers to questions 1-3 were used to perform a pairwise
comparison of participants’ experience, and the answers to the question 4 provided enough
information to adjust any unrealistic answers3 provided for the first 3 questions.

2.4 Experimental procedure

The experimental procedure was explained to the participant, including a brief explanation of the
block structure and type inference in Python. The participant was seated approximately 70cm
in front of the screen and eye tracker. The participant read and signed an informed consent
form. Next, the eye tracker was calibrated using a nine-point calibration lasting approximately
45 seconds, during which the participant focused their eyes on nine points that appear on an
equally spaced 3⇥3 onscreen grid in random order.

To begin with, the participant completed two example tasks, one with highlighting and one
without. No measurements from these tasks were included in subsequent analysis. This allowed
the participant to become familiar with the nature of the task and also ask questions if neces-
sary. Once the participant understood the task, the actual study commenced. The participant
stepped through each of 3 task pairs, 6 tasks in all, in random order. The tasks were presented in
a slideshow for instant transitions between tasks. Timing and eye-tracking for each task began
when the slideshow switched to the task slide, and ended when the participant identified the cor-
rect answer by saying the result of the requested computation aloud. Participants were requested
to complete the tasks mentally without the aid of pen and paper, but were allowed to vocalise
their thinking process. The experiment had an average duration of 13 minutes, never exceeding
20. Finally, participants completed the programming experience self-assessment questionnaire.

We gathered data from 10 graduate computer science students at the University of Cam-
bridge. For each participant we recorded an average of ⇠1300 fixation events. The eye-tracker
recorded particularly poor fixation data for 3 participants; this was attributable to the fact that
these participants wore glasses which confused the eye tracker. Their data was excluded from
analyses of visual effort.

3 Results

In this section we report the results of the study previously outlined. The primary variables
being studied are presented in Table 1. In §3.2 we introduce two derived variables which are not
included in this table. We use the Shapiro-Wilk test to establish normality. We use the Wilcoxon
signed rank test (WSRT) for paired nonparametric comparisons.
3 We made the anecdotal observation that experienced programmers tended to underestimate their competency,

whereas less experienced programmers tended to gauge their ability more accurately. Evidence, perhaps, that
the Dunning-Kruger effect applies to programming experience (Kruger & Dunning, 1999).

4



Page 53

Table 1. Variables

Highlighting Whether the task was highlighted or plain. An independent variable.

Experience Each of our 10 participants was assigned a rank from 1-10 with 10
being most experienced. An independent, ordinal variable.

Task completion time The time it takes a participant to complete a task (in seconds).

Fixation count The number of times a participant fixates on the task image while
completing it. A dependent, interval variable.

Fixation duration How long an individual fixation lasts (in microseconds).

Prompt fixations The task image was divided into two so-called “areas of interest”: the
prompt, which was the single line containing the instruction for the
task, and the content, which was the code for the task. This variable
counts a participant’s fixations on the prompt during a task.

Context switches The number of times a participant fixates on an area of interest
that is different from the area that was the subject of the imme-
diately previous fixation. For example, if the participant fixates on
the prompt, then on the content, and then on the prompt again, the
number of switches is 2.

3.1 Effects of highlighting

The task completion times for highlighted as well as plain tasks were not normally distributed.
Task completion times for highlighted versions of the tasks were significantly lower (WSRT:
T = 136, p = 0.047). The difference in medians is 8.4s. This is illustrated in Fig. 2.

We investigated the effect of highlighting on some features of the eye-tracking data, namely
fixation durations, fixation count, fixations on prompt and context switches. These can be collec-
tively thought of as the “visual effort” required to perform the comprehension task. We did not
find a significant effect of highlighting on fixation counts, fixation durations or prompt fixations.

Recall that a context switch occurs when a participant fixates on an area of interest that is
different from the area that was the subject of the immediately previous fixation. Highlighted
code incurs significantly fewer context switches than non-highlighted code (WSRT: T = 13.5, p =
0.045). The difference in medians is 23 context switches. This is illustrated in Fig. 3.

3.2 Effect of programming experience

As the data was not normally distributed, a 2-way anova could not be used to investigate the
interaction of experience with highlighting on task times. We instead introduce a new derived
variable, time advantage, which is simply the ratio of the task completion time in the non-
highlighted task to the completion time for its highlighted counterpart. Thus, if a participant
completed the plain version of a task in 60s, and the highlighted counterpart in 30s, the time
advantage for that task instance is 60s/30s = 2. We consider this to embody the effect of
highlighting on task completion time. We then investigated the correlation of experience with
this variable. On the raw data we observe a significant Spearman correlation of -0.37 (p = 0.044)
but a weaker Pearson correlation (r = �0.29, p = 0.12), suggesting a nonlinear relationship.
When log-normalised, the time advantage variable has a significant Pearson correlation with
experience (r = �0.39, p = 0.033). We conducted a similar study with context switches for the
derived variable switch advantage, but did not find a significant correlation.

5



Page 54

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930
Task instance

0

50

100

150

200

250

Ta
sk

co
m

pl
et

io
n

ti
m

e
(s

)
Highlighted
Plain

Fig. 2. Bar graph comparing task completion times for a highlighted task with its plain counterpart. Each pair
of bars is an instance of a participant completing a particular task pair.

1 2 3 4 5 6 7 8 9 10 11 12
Task instance

0

10

20

30

40

50

60

70

80

90

C
on

te
xt

sw
it

ch
es

Highlighted
Plain

Fig. 3. Bar graph comparing context switches for a highlighted task with its plain counterpart. Each pair of
bars is an instance of a participant completing a particular task pair. Fewer instances were available for this
comparison since data from participants wearing glasses had to be excluded from analyses of visual effort.

6



Page 55

0 2 4 6 8 10 12

Experience rank
�0.8

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

lo
g(

ti
m

e
ad

va
nt

ag
e)

Trend
Task instance

Fig. 4. Each point represents a single task pair completed by a single participant. Its x-coordinate is the rank of
the participant in ascending order of experience, and the y-coordinate is the logarithm of time advantage. The
trend line is given by least-squares regression, has the slope -0.06, and estimated parameter covariance < 10�3.

4 Discussion

Our results confirm the intuitive but heretofore unsubstantiated idea that syntax highlighting
in source code improves program comprehension. The median difference in task completion time
was 8.4s in favour of highlighting. It is possible that the magnitude of this effect increases with
the length of the program; an interesting area for future investigation.

We were unable to detect differences in fixation count and durations due to highlighting.
Since 3 of our 10 participants were excluded from analyses of visual effort as their glasses ren-
dered the eye-tracking data unusable, it is possible that statistical significance was not achieved
as a consequence of the reduced sample size. It is also plausible that syntax highlighting gen-
uinely does not affect fixation durations or count. As shown by the observation that syntax
highlighting has an effect on context switches, the fixation sequence might be altered in a far
more sophisticated manner.

Our inference that the presence of highlighting significantly reduces the number of context
switches is of particular interest. Context switches during the experimental tasks almost always
took the same form: while reading the content, the participant glanced at the prompt before
continuing with the content. This sequence of 2 switches always served a single purpose: to
remind the participant of the argument values. Our results show that the need to be reminded
of the input values was significantly greater when the code was not highlighted.

There is no immediately clear explanation for this, but we suggest a simple one here: it is
plausible that the mental overhead required to process and understand plain code is greater
than the mental overhead required to process highlighted code, since highlighted code contains
additional semantic richness by virtue of the colours of the tokens. This additional overhead in
plain code causes other items, such as the values of the input arguments, to be displaced from
the working memory (Baddeley & Hitch, 1974) of the participant. This would account for the
increase in context switches in non-highlighted code.

The theory that there is less overhead involved in processing code with additional visual
cues (such as those provided by syntax colouring) is qualitatively supported by our results, as
well as quantitatively by the aforementioned study by Gilmore and Green (1988). The data
from some participants suggests that syntax highlighting allows the programmer to focus on a

7



Page 56

smaller region of code, as illustrated in the fixation heat map in Figure 5. Furthermore, while
the quality of the eye-tracking data was not generally good enough to designate single keywords
as areas of interest, the data from certain participants with very good readings suggests that
syntax highlighting allows the programmer to even ignore some keywords entirely, as illustrated
in the gaze plot in Figure 6. This theory is also supported by our inability to detect a relationship
between experience and the effect of highlighting on context switches. If highlighting does affect
context switches by the mechanism hypothesised above, there is no reason to expect it to vary by
programming experience. Future work may study this effect in greater detail, providing better
quantitative evidence.

Fig. 5. Left: fixation heat map for code without highlighting. Right: heat map for the highlighted counterpart.

Fig. 6. Left: gaze plot for code without highlighting. Right: gaze plot for the same participant with the highlighted
counterpart. The numbers denote the order in which the fixations occurred. Observe the lack of fixations on
keywords in the highlighted case.

Finally, we found that programming experience was negatively correlated with time advan-
tage. It appears that syntax highlighting improves program comprehension speed to a greater
extent in novice programmers than in experienced programmers. However, this may be a con-
sequence of the brevity of the tasks; repeating the study with longer programs may reveal that
experienced programmers stand to gain just as much as less experienced programmers.

5 Conclusions

We investigated the effect of syntax highlighting on program comprehension and its interaction
with programming experience using eye-tracking data captured from 10 participants. Each par-
ticipant was requested to mentally compute the output of a Python function for a given set of
arguments, repeating this several times with highlighted and non-highlighted code.

The presence of syntax highlighting significantly reduces task completion time, but the mag-
nitude of this effect decreases as programming experience increases. We did not detect an effect
of the presence of highlighting on the durations of individual fixations, nor did we detect an
effect on the total number of fixations required to complete the task.

8



Page 57

The presence of syntax highlighting significantly reduces context switches. We hypothesise
that syntax highlighting improves the ability of the programmer to mentally retain the state
of the execution, and that highlighted code incurs a lower mental comprehension overhead. In
some cases, the eye-tracking data suggested that the participants were able to ignore highlighted
keywords entirely, as though perceiving them peripherally was enough to incorporate their se-
mantics into the computation. Future work may investigate this effect, as well as the effect on
longer programs, with more quantitative rigour.

6 Acknowledgements

Many thanks to Graham Titmus for help with hardware; the Rainbow research group4 for
providing the eye tracker and laboratory space; Alan Blackwell for various discussions on the
topic; Thomas Green for his considerate, detailed and excellent feedback on the written drafts;
and all the participants for their valuable time and effort.

References

Baddeley, A. D., & Hitch, G. J. (1974). Working memory. The psychology of learning and
motivation, 8 , 47–89.

Baecker, R. (1988). Enhancing program readability and comprehensibility with tools for program
visualization. Proc. 10th International Conference on Software Engineering, 1988 , 356–
366.

Bednarik, R., & Tukiainen, M. (2006). An eye-tracking methodology for characterizing program
comprehension processes. Proceedings of the 2006 symposium on Eye tracking research &
applications (ETRA 2006), 125–132.

Bednarik, R., & Tukiainen, M. (2008). Temporal eye-tracking data: evolution of debugging
strategies with multiple representations. Proc. ETRA 2008 , 99–102.

Busjahn, T., Schulte, C., Sharif, B., Begel, A., Hansen, M., Bednarik, R., . . . others (2014).
Eye tracking in computing education. In Proceedings of the tenth annual conference on
international computing education research (pp. 3–10).

Cigas, J. F. (1990). Dynamically displaying a pascal program in color. Proceedings of the 1990
ACM SIGSMALL/PC symposium on Small systems, 68–71.

Gilmore, D., & Green, T. (1988). Programming plans and programming expertise. The Quarterly
Journal of Experimental Psychology , 40 (3), 423–442.

Green, B. F., & Anderson, L. K. (1956). Color coding in a visual search task. Journal of
Experimental Psychology , 51 (1), 19.

Green, T. R. (1989). Cognitive dimensions of notations. People and computers V , 443–460.
Hakala, T., Nykyri, P., & Sajaniemi, J. (2006). An experiment on the effects of program code

highlighting on visual search for local patterns. Psychology of Programming Interest Group,
38–52.

Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehen-
sion. Psychological review , 87 , 329–354.

Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: how difficulties in recognizing
one’s own incompetence lead to inflated self-assessments. Journal of personality and social
psychology , 77 (6), 1121.

Rubin, T. (1988). User interface design for computer systems. Halsted Press.
Sharif, B., & Maletic, J. I. (2010). An eye tracking study on camelcase and under_score identifier

styles. 18th International Conference on Program Comprehension (ICPC 2010), 196–205.
4 Computer Laboratory: Graphics & Interaction Group, http://www.cl.cam.ac.uk/research/rainbow/ (as of

June 15, 2015)

9



Page 58

Spohrer, J. C., Soloway, E., & Pope, E. (1985). A goal/plan analysis of buggy pascal programs.
Human–Computer Interaction, 1 (2), 163–207.

Van Nes, F. (1986). Space, colour and typography on visual display terminals. Behaviour &
Information Technology , 5 (2), 99–118.

10


