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Abstract
Interactive machine learning systems allow end-users, often
non-experts, to build and apply statistical models for their
own uses. Constructivism is the view that learning occurs
when ideas and experiences interact. I argue that the ob-
jectives of interactive machine learning can be interpreted
as constructivist. By so characterising them, I show how
constructivist learning environments pose critical questions
for the design of interactive machine learning systems.
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What is interactive machine learning?
As machine learning makes rapid advances, researchers
are increasingly interested in enabling people to build and
apply machine learning models for their own use in a vari-
ety of scenarios. These end-users are typically not experts
in statistics or machine learning, so careful interaction de-
sign is applied, in order to reduce the expertise barriers
imposed by the hard concepts of statistical modelling and
model programming. Thus, the model construction process
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typically involves a training loop wherein the user repeat-
edly chooses (or is given) example data, and then provides
a judgement or label with which to train the system. As it
is an interactive process, these systems are collectively
known as interactive machine learning (IML) systems.

At a glance:
types of IML systems

Model-building systems
help the user build a reusable
model with which to classify
or predict new values. For
example, Crayons [12].

Analytic systems help the
user explore, understand,
and analyse a dataset. For
example, Behrisch et al.’s
feedback-driven exploratory
classifier [5].

Hybrid systems incorporate
both the aims of model-
building as well as analytic
systems, and sometimes
also aim to illustrate statisti-
cal concepts. For example,
BrainCel [28].

IML systems can largely be categorised into 3 types, based
on the tasks they facilitate: model-building, analytics, and
hybrid (facilitating both model-building and analytics). The
model-building activity is not principally concerned with
the structure of the model, but rather its ability to robustly
predict real-world outcomes, and so it is usually accept-
able for the model to have undecipherably large numbers
of parameters, and convoluted structure. The outcome
here is a reusable model. In contrast, the analytics activ-
ity is concerned with the interpretation of data through the
model, typically requiring the model to have small numbers
of readily-interpretable parameters. The outcome here is
analytic insight. The difference between model-building and
analytics can be loosely understood as Breiman’s ‘Two Cul-
tures’ of statistical modelling [8] manifested in task form.
Hybrid systems incorporate elements of both.

Crayons [12] is perhaps the canonical example of inter-
active machine learning in the model-building tradition. In
Crayons, the user builds a classifier to segment an image,
for example, to detect a hand against a background. The
user annotates a training image by drawing positive (hand)
and negative (not-hand) labels by colouring in the relevant
regions with a brush tool as one would in a graphics appli-
cation. As the user draws, the system trains a model (in this
case, fast decision trees) on the training data and displays
the model prediction on the image itself, through a translu-
cent overlay. This makes clear which parts of the image are
currently ‘thought’ to be a hand by the model, enabling the
user to focus further annotation on misclassified areas. This

loop of continuous human intervention and system feed-
back, through which a machine-learned model is improved,
is the essence of interactive machine learning.

CueT [2], another model-building system, helps users quickly
triage alarms regarding the health of devices on a network.
As network alarms stream in, the system suggests a num-
ber of options for triaging the alarm, based on the opera-
tor’s past history of attending to alarms. It learns continu-
ously, allowing it to quickly start producing useful sugges-
tions for previously unencountered alarm situations.

An example of an analytics application is Behrisch et al.’s
interactive system for building decision tree classifiers on
large multidimensional data [5]. In contrast to Crayons and
CueT, the objective here is not to build a reusable model,
but to learn something about the structure of the data be-
ing modelled. Multiple visualisations are used to help the
end-user develop a sense of the quality of the model. For
instance, a histogram shows the number of uncertain deci-
sions – when a large proportion of the dataset is classified
with low certainty, that suggests that the model is currently
of poor quality and more (or better) training data is required.

The BrainCel system [27, 28] allows users to build and ap-
ply machine learning systems on data within spreadsheets.
Users select rows of ‘correct’ data to train a model which
can then predict values for empty cells. Using multiple co-
ordinated views of the model, BrainCel helps end-users to
critically assess the quality of their model, including ensur-
ing adequate class representation, and avoiding reliance on
predicted values which have low confidence. BrainCel is a
hybrid, developed to encompass the aims of systems like
Crayons as well as Behrisch et al.’s. That is, it is both an
analytics tool and a model-building tool. A final, additional
aim of BrainCel has been to introduce statistical concepts to
non-expert end-users.



What is constructivism?
Constructivism is a theory describing the learning process;
the manner in which human knowledge is generated. It
posits the view that human knowledge is constructed as
a result of the interaction between a person’s mental mod-
els and their experiential perceptions. This stands in oppo-
sition to the naïve psychology made explicit by Heider [3]
that knowledge is information, and consequently, learning
is analogous to information delivery; in this (instructionist)
view, one can optimise learning purely by training teachers
to transfer information more effectively. Constructivism has
had many influences but is largely attributed to Piaget [33].
Although evidence of the benefits of constructivism as a
pedagogical tool has been mixed [20], the theory has been
highly influential on learning theory and educational reform.

Computer science education has been the source of a few
notable applications of constructivist theory. For example,
Papert’s Logo programming system [1]. Logo’s emphasis
on direct visual representation and feedback through turtle
graphics allowed novice programmers to directly experience
the effects of their code, increasing the surface area for
interaction between their ideas and experiences, facilitating
the construction of new or better mental models. The idea
has been refined and combined with powerful notions such
as blocks programming and multiple representations, to
create sophisticated constructivist environments such as
Alice [10], Scratch [25], and DrawBridge [30].

Implicit and explicit learning outcomes in IML
As previously noted, interactive machine learning systems
have multiple objectives. Some, such as Crayons, allow
you to build a reusable model, whereas others, such as
Behrisch et al.’s, allow you to analyse a dataset through the
lens of a statistical model. Still others, such as BrainCel,
aim to expose the end-user to statistical concepts.

If examined carefully, each of these can be restated as
learning outcomes, as follows:

1. Model-building: learning about the model instance,
its strengths, weaknesses, coverage of training data,
fitted parameters, etc.

2. Analysis: learning about the structure of the data, its
statistical properties and features.

3. Exposition to statistical concepts: learning about a
particular algorithm, or general concepts about train-
ing and testing such as class representation, noisy
data, outliers, etc.

Systems such as Logo aim to maximise constructivist knowl-
edge generation by maximising the opportunities for inter-
action between experience and ideas. Happily, the feed-
back loop between system and user which drives interactive
machine learning is also a rich source of experience gen-
eration. As the user adds training examples or manipulates
other parameters of the model, the system attempts to il-
lustrate its current understanding through externalisations
such as the translucent overlays in Crayons, an experience
which causes the user to update their mental model of the
system’s intelligence – a form of metacognition [26].

Thus, it may be argued that IML systems are constructivist
learning environments just like Logo and Scratch, but here
the ‘programs’ being generated are not graphics or anima-
tions, but models, and the programming language is not a
blocks language, but the stream of interactions (annotation,
labelling, parameter adjustment). However, unlike Logo and
Scratch, ‘learning’ in the sense of acquiring concepts and
gaining real-world skills is not an explicit outcome in IML
systems. Rather, in IML systems, production of the desired
result, whether reusable model or analytic insight, is incum-
bent on a series of implicit intermediate learning outcomes.



Critical constructivist questions for IML
Many interesting challenges and opportunities arise from
subscribing to the view that IML systems are really con-
structivist programming systems with the aim of generating
certain types of knowledge through an experiential inter-
action loop. Many virtual learning environments grounded
in constructivist design, so-called constructivist learning
environments (CLEs), have been developed for domains
outside programming. For instance, the Lab Design Project
was a hypermedia system designed for researchers to prac-
tice sociological research skills and to learn about how lab
design shapes scientific practice [17]. The Jasper series
[24] developed at Vanderbilt immersed students in vivid
stories to encourage situated response to mathematics
problems. Consequently, much research has focused on
the design of such CLEs. In this section I have engaged in
the hermeneutic exercise of drawing upon a few core texts
[18, 9, 32, 14, 16, 23, 19] in that area. In the following para-
graphs, I will highlight the established design principles of
CLEs which ask meaningful critical questions for the design
of IML systems.

Task ownership Users learn by working towards a prob-
lem which they see to be relevant and reflective of real-
world situations. Such a stimulus for authentic activity causes
users to be goal-oriented and intrinsically motivated to com-
plete the task. It is typical for IML systems to satisfy this
criterion, as both model-building and analytics applications
facilitate an end-user task – it is an assumption of these
systems that users will only engage with the system pre-
cisely because they need to solve a real-world problem of
which they take ownership.

Ill-defined problem Users are able to better engage with
problems which are ill-defined. This allows aspects of the
problem to be emergent, requiring users to make defen-

sible judgements. Both model-building and analytics are
ill-defined. With typical software engineering problems,
the definition of ‘bug’ is typically uncontroversial, with the
programmer able to conclusively decide whether some be-
haviour of their program is desirable or undesirable. How-
ever, in model-building and analytics, the user does not re-
ally know what the ‘right’ answer is. Instead, these activities
are dominated by ill-defined questions, for instance: does
the model accurately capture the domain? Is it overfitting?
Are these variables interrelated? Is this analysis leading to
sound conclusions?

IML’s techno-pragmatic roots have led to an odd juxtaposi-
tion between the objectivist requirements of machine learn-
ing algorithms, and the open-ended nature of the tasks be-
ing facilitated. To build a robust machine learning model
requires high-quality training data with clearly discriminable
classes, free of training label noise. The user’s task is to
recognise and label objects, organise them coherently, and
integrate them with existing knowledge – a decidedly in-
structionist approach. By contrast, in the constructivist view,
objects do not have absolute meaning; meaning is con-
structed by the individual as a result of experiences and
situated beliefs. This type of activity requires a rich context
where meaning can be negotiated and understanding can
emerge and evolve.

When IML systems hit the limits of the objectivist approach,
new interaction design techniques coupled with powerful
inference algorithms have been shown to provide a unique
middle ground. Some examples of this include structured
labelling [21] and setwise comparison [29], where training
labels are assumed to be ill-defined, and the system as-
sists the user in gradually forming stable notions of labelled
concepts, fit for use in machine learning systems.



Perturbation The concept of perturbation (or disequilibra-
tion, in Piagetian terms) is the engine driving the learning
process. It refers to a stimulus which does not conform, or
gently subverts, the expectations and mental model of the
user, forcing them to construct new knowledge in order to
‘accomodate’ this experience. The introduction of perturba-
tions, and encouraging the strategic exploration of errors,
is already a central issue in IML systems, since building
effective and interpretable models revolves around the ac-
tivity of addressing errors made by the machine-learned
model [22]. Unlike IML, CLEs acknowledge that errors
have deeply embedded negative connotations in our socio-
cultural environment. As the intended learning outcomes of
IML become more explicit, designers need to be sensitive to
the impact of errors on learners’ motivations, and the poten-
tial for the misattribution of poor instructional outcomes.

I have begun by introducing three matters (task ownership,
ill-defined problem, and perturbation) with which IML sys-
tems already engage to some extent, but for which I have
elaborated a new theoretical grounding based in construc-
tivist design. Next, I will discuss how four further issues
core to CLEs shed new light on IML systems.

Reflexivity A critical self-awareness of one’s learning,
beliefs and knowledge is central to constructivist environ-
ments. Reflective users take control over and responsibil-
ity for their thoughts, and create a defensible catalogue of
provenance for their knowledge. IML systems currently do
not promote critical reflection, but a promising solution is
to capture the user’s interaction history in detail, and facil-
itate simple querying and browsing. This is not technically
straightforward, but exemplary design solutions exist in the
domains of sketching [36] and source code change history

[35, 34] which demonstrate how such affordances support
reasoning about knowledge provenance as well as direct
manipulation of the knowledge construction history space.

Collaboration Learning takes place in a social context.
The construction of meaning, like so many other activities,
seldom occurs individually. The ability of a user to perform
is predicated on group contexts, unlike the (typically) ar-
tificially individualistic settings of school and classrooms.
To this end, CLEs often incorporate collaborative activities
intended to promote dialogue and encourage the social ex-
posure of ideas. IML systems are typically not designed
with collaboration in mind, but may import lessons from col-
laborative analytics [15] in order to do so.

Task in context Knowledge construction is context-dependent.
Within a particular setting, it is historically developed, evolved
over time within a culture. Moreover, beliefs and opinions
are constantly adjusted by socially-mediated expectations.
This process tends towards increasing common ground,
resulting in an increased robustness of mental models. Pro-
fessional customs, skills, workflows, and institutional expec-
tations all filter and sculpt learning. The design process for
IML systems is sensitive towards these issues, but what this
might mean for their design is a critical question.

Tool mediation The process of creating knowledge is
mediated by tools and symbols. Just as carpentry is not
merely teleology for the hammer, but is also actively shaped
by the invention thereof, so do many aspects of modern
technology influence the practice from which they emerge.
For example, the invention of email hasn’t merely made us
more efficient communicators – the nature of that technol-
ogy has radically changed our paradigms for communica-
tion. The invention of tools may be a cultural necessity, but
the tools, in turn, transform the culture.



IML systems, especially those with an emphasis on analyti-
cal outcomes, need to be aware of their role as cultural me-
diators. Boyd and Crawford [7] and Blackwell [6] have high-
lighted as a concern the fact that knowledge is shaped by
the constraints, assumptions, and contexts of statistical al-
gorithms and the data on which they operate. For instance,
are Twitter posts representative of global sentiment, sim-
ply because they constitute a large sample? IML systems
embody epistemological and ontological assertions, which
are currently implicit. This is made further problematic be-
cause statistical inference is the subject of much dispute.
Clearly we are not ready to settle into ideologies and epis-
temologies when there is warfare on several fronts, e.g., fre-
quentist versus Bayesian approaches, which differ on such
fundamental axioms as the interpretation of ‘truth’ [4, 11].
Since these analytical systems constitute an indispensable
umwelt through which we collectively experience data, it is
well worth these assumptions being made explicit.

At a glance:
critical constructivist
issues for IML

Task ownership: a relevant,
owned problem is intrinsic
motivation for learning.

Ill-defined problem: re-
quires users to tackle emer-
gent issues and make defen-
sible judgements.

Perturbation: nonconform-
ing experiences necessitate
mental ‘accomodation’.

Reflexivity: self-critical
learners understand their
thoughts and knowledge
better.

Collaboration: the construc-
tion of meaning is a social
activity.

Task in context: historical
and socio-cultural influences
shape learning.

Tool mediation: systems are
responsible for changing the
culture which creates them.

Implications for design practice in IML
This brief analysis cannot profess to directly support design
practice, not least because IML, still in its nascency, has yet
to form a clear identity as a design practice. As Stolterman
[31] notes, interaction design research often fails due to in-
accurate characterisations of design as a practiced activity.
However, over the course of this exercise, two themes with
apparent implications for IML have emerged from the doc-
umented design practice for CLEs. The first is that design
must be grounded in a defensible theoretical framework,
and validated iteratively through successive implementa-
tions. Secondly, design must be informed through situated
techniques such as ethnography and activity-theoretic anal-
ysis. Many current IML systems are indubitably products of
similar underlying processes; however, the thick description
which typically evidences such a process is conspicuously
lacking from our current literature.

Conclusions and future work
The constructivist view of IML expands our design consid-
erations and shows how we might frame concerns such
as reflexivity, task in context, and tool mediation. The dis-
cussion has raised several practical and theoretical issues.
For instance, what are the appropriate design and inter-
action metaphors for knowledge provenance? How can
model-building be collaborative – is it more like collabora-
tive analytics, or collaborative problem solving [13]? In what
ways can IML systems promote reflexivity? How could IML
systems explicate epistemological assertions? Is there a
fundamental difference between learning and analytics, and
if so, how is that meaningfully articulated in design? Cur-
rently, learning is an implicit side-effect of IML systems –
what would a pure, explicit learning environment look like?

In this paper, I have argued that the interaction loop of in-
teractive machine learning systems facilitates constructivist
learning, as it maximises the interaction between the end-
user’s experience of the model, and their ideas regarding
the model status. I have drawn parallels between interactive
machine learning systems and constructivist learning envi-
ronments. While interactive machine learning systems have
so far had a certain set of pragmatic design influences, this
constructivist interpretation opens up new avenues and im-
plications for design.
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