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ABSTRACT
A growing number of domains, including affect recognition
and movement analysis, require a single, real number ground
truth label capturing some property of a video clip. We term
this the provision of continuum labels. Unfortunately, there
is often an uncacceptable trade-off between label consistency
and the efficiency of the labelling process with current tools.
We present a novel interaction technique, ‘setwise’ compari-
son, which leverages the intrinsic human capability for consis-
tent relative judgements and the TrueSkill algorithm to solve
this problem. We describe SorTable, a system demonstrat-
ing this technique. We conducted a real-world study where
clinicians labelled videos of patients with multiple sclerosis
for the ASSESS MS computer vision system. In assessing
the efficiency-consistency trade-off of setwise versus pairwise
comparison, we demonstrated that not only is setwise compar-
ison more efficient, but it also elicits more consistent labels.
We further consider how our findings relate to the interactive
machine learning literature.
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INTRODUCTION
Many computer vision applications are built to produce a real
number output based on an input video. To train these appli-
cations requires a single, real number ground truth label per
video that captures the property to be predicted. For exam-
ple, the magnitude of positive valence in a video of a smile
for affect recognition applications [31]; the clinical impres-
sion of ‘tremor’ in a video of a patient performing a standard
movement to train a system for tracking neurological disease
progression [23]; or the degree of correctness of a rowing
stroke in automated sports coaching [15]. In contrast to other
video labelling situations, these cases require only a single
judgement, but that judgement necessitates seeing continuous
change in movement across the entire video. We refer to these
types of labels as continuum labels.

We address continuum labels which differ in three ways from
labelling challenges already tackled in computer vision re-
search (e.g. security surveillance): (1) many domains require
expert labellers, making crowdsourcing in its current form
untenable; (2) the labels are continuous (e.g., real numbers in
the interval [0,1]), rather than discrete categories (e.g., 0, 1,
2), making label consistency a challenge; (3) the property of
interest can only be perceived temporally, i.e., needs to be ob-
served over time in each video, which makes rapid (efficient)
comparisons difficult. As reliable labels are critical to the
performance of the resultant machine-learned model, we need
better approaches to support labelling in application domains
reliant on video training data with continuum labels.

Providing continuum labels is tedious. Large databases, in the
order of hundreds of examples, or better thousands, are needed
to serve as ground truth training sets. There is substantial
work in the computer vision community on creating tools for
labelling, such as the FEELTRACE system [12]. However,
unlike tools that may be developed in the field of human-
computer interaction, these tools do not specifically build on
human capabilities. As a result, potential interaction solutions



to problems perceived as intractable in the computer vision
community, such as continuum labels, are less explored.

The continuum labelling problem is well exemplified by chal-
lenges faced in the development of ASSESS MS, a computer
vision system for the assessment of motor ability in patients
with multiple sclerosis [33]. It aims to provide a more con-
sistent and fine-grained measure of motor ability to enable
reliable tracking of disease progression, since neurologists ex-
hibit high inter- and intra-rater variability in their assessments.
Ultimately, this high variability which motivated ASSESS MS
also necessitated the development of a more consistent way to
capture clinical judgement to be used as ground truth labels.

There is a trade-off between efficiency and consistency when
doing continuum labelling. For example, providing discrete
numeric labels to categorize motor ability, e.g. 0 to 4, is
efficient, requiring only a few seconds per label, but inter-
and intra-labeller reliability are consistently low even with
training [11]. One way of improving consistency is to use
pairwise comparison, for which a person is asked whether one
entity is better, worse, or the same as another. After comparing
all possible pairs, a ranked order can be calculated. In earlier
experiments, we have found that this increases consistency, but
is inefficient. The number of pairwise comparisons required
grows quadratically with the number of videos, and so does
not scale to the number of videos needed for the kinds of
computer vision applications on which we focus here.

To address the problem of scalable, consistent continuum la-
belling, we introduce setwise comparison, a novel interaction
technique that makes consistent labelling tractable at the scale
required for computer vision applications. Like pairwise com-
parison, setwise comparison builds on the cognitive ability of
labellers to provide better relative judgements than absolute
ones, but achieves better efficiency by asking labellers to make
sets of relative judgements, from which a complete ranking
can be inferred using Bayesian techniques, specifically the
TrueSkill algorithm. The interaction modes employed draw
upon interactive machine learning techniques, extending them
for continuum labels.

This paper makes the following contributions:

• We introduce the problem of continuum labelling through
preliminary studies conducted while developing the ASSESS
MS system.

• We present SorTable, a system which implements setwise
comparison, a novel interaction technique that makes con-
sistent continuum labelling tractable.

• We describe a real-world comparative study of pairwise and
setwise comparison on ASSESS MS patient data, demon-
strating that setwise comparison produces significantly
more consistent and efficient labels.

• We discuss how our findings may be applied to other inter-
active machine learning applications.

THE ASSESS MS LABELLING PROBLEM

Motivation: Improving Standard Clinical Assessment
Multiple sclerosis (MS) is a chronic inflammatory disease of
the central nervous system causing a wide range of symptoms
including ataxia (swaying of the body), tremor (oscillation of
a body part), numbness, paralysis, visual disturbance, and var-
ious forms of cognitive difficulties. Symptoms, either alone or
in combination, are usually suffered during relapses followed
by extended periods of remission in which symptoms may
improve. Over time the disease can enter into a progressive
phase in which a steady deterioration occurs, affecting the
ability to do everyday tasks, such as walking or eating [22].
The unpredictability of the disease course makes the ability to
track MS particularly useful.

The condition is currently assessed using the Expanded Dis-
ability Status Scale (EDSS) [26], a standard rating scale based
on clinical examination. Patients are asked to perform a range
of functional exercises, including stretching out one arm to the
side and then touching the nose (Finger Nose Test) or walking
on a pretend tight rope (Tightrope Walking). Patients are then
observed for specific symptoms, such as tremor, which the
clinician rates on an integer scale that usually ranges from 0
to 4. Multiple such sub-scores are summarized into a total
EDSS score from 0 to 10. Although the EDSS is widely used
and accepted, it suffers from low inter- and intra-rater relia-
bility making disease tracking problematic [34]. Moreover,
the coarse-grained nature of the sub-scores, meant to increase
rater agreement, makes the scale less sensitive to changes in
patient state.

ASSESS MS aims to address this problem by quantifying
changes in motor ability more consistently and with finer gran-
ularity than currently possible. A Kinect camera captures
depth+colour videos of neurological assessment movements
performed by patients in a clinical setting with the support of
the health professional. These videos are pre-processed to iso-
late the patient and movement is captured through an alphabet
of motion filters learned in an unsupervised manner. Features
derived through this alphabet of filters are then utilised in a
supervised machine learning approach coupled with EDSS
sub-score labels.

Problem: Defining Ground Truth
ASSESS MS requires reliable ground truth labels if it is to
provide a consistent measure of motor ability. In an early
attempt to create consistent ground truth labels, we devel-
oped a protocol in which all clinical team members (n = 4)
jointly agreed on labels for a set of 100 “gold-standard” videos
based on the relevant EDSS sub-score. Specifically, clinicians
blind-labelled videos and then explicitly verbalized their label
criteria. This process was expected to lead to a joint, stable
concept for labelling. Each clinician then labelled several hun-
dred videos that included a sample of “gold standard” videos
from their own clinic. Labelling was relatively efficient (me-
dian rating time of 3.3s per video). Consistency, however,
was poor, ranging from 23-69% agreement on the previously
agreed “gold standard” videos.



To increase label consistency, we explored the method of
pairwise comparison. Clinicians were shown pairs of patient
videos and asked to choose which exhibited higher disability
or whether they were equal. When 11 neurologists performed
pairwise rating of 50 videos, an interclass correlation coeffi-
cient (ICC) of 0.71 was achieved, which if averaged across 2
raters, increased to a 0.96 median. In the medical literature,
this is considered a highly robust level of consistency [19].
This method also provided a finer level of granularity than the
existing EDSS scale, with clinicians distinguishing at least one
additional level of motor ability within each existing integer
sub-score.

While pairwise comparison solved the problem of higher con-
sistency and finer-grained assessment, it failed in terms of
efficiency. Comparing every video to every other in the set
of 50 required 1,225 comparisons. Neurologists required be-
tween 87 and 146 minutes to rate this set of videos. As the
number of comparisons grows quadratically with the number
of videos, this is clearly not tractable for even a small video
set of 300, which would require 44,850 comparisons, or over
37h of continuous labelling. The need for a method for which
the labelling effort grows linearly with the number of videos
drove the development of the setwise comparison technique.

RELATED WORK

Continuum Labelling
Labelling is a key part of supervised machine learning algo-
rithms [24]. Large training datasets are needed in which each
training data point has a label, enabling statistical judgement of
what a data point outside of the training set might be labelled.
By continuum labelling we refer to the provision of labels that
consist of a single, continuous value that captures a certain
property of a video, which may summarise other continuously
changing properties across all frames in that video. This could
be a numeric score or probability and is typically associated
with regression problems. It stands in contrast to categorical
labels, typically associated with classification problems.

Scale is a key challenge for labelling. This is a particular prob-
lem for video clips, which are typically more time-consuming
to perceive and compare, and therefore to label, than static
media (e.g. images). While companies often pay people to
label data (e.g. for search engines), crowdsourcing is being
explored as a more cost-effective alternative. A number of
tools have been built to specifically support efficient frame-
by-frame annotation of video in which people and objects are
identified and tracked [38]. There are specific tools to enable
crowd-support in coding behavioural actions in video [28].
The use of “surrogates” (static summaries) to capture key el-
ements of a video has also been explored [32]; and attempts
have been made to automatically label realistic human actions
in movies using natural language script [27].

Unfortunately, none of these approaches is appropriate to con-
tinuum labelling in the domains that we have identified, which
require expert knowledge, such as that of athletic coaches
[15] or doctors [33]. Even applications that draw on common
knowledge, such as affect recognition, often require experts
to achieve consistent continuum labels [3]. People may be

able to easily distinguish between boredom and laughter, but
determining the difference between some laughter and a lot of
laughter in a consistent manner takes expertise. As a result,
small numbers of people must label large numbers of samples,
often at high cost, as existing techniques to increase speed,
such as surrogates, are not applicable given the continuous
nature of what is being labelled.

Another substantial problem in the literature is label noise, or
labels that do not accurately reflect the data point [16]. Many
approaches have been developed to address this problem in
the machine learning literature. For instance, gaining repeated
labels [21], modelling labeller noise [39], or automatic de-
tection of outlier labels [9]. The first two approaches are not
appropriate to small numbers of expert labellers. The final
one assumes mislabelled data points can be statistically char-
acterised. However, mislabelling in continua often arises not
because the label is inherently wrong, but because the concept
being labelled is “fuzzy”, that is, without clear boundaries.

The support that people need in evolving a concept in order
to label it consistently has been identified and addressed for
static data in the interactive machine learning literature [25].
We review this literature below.

Interactive Machine Learning
The interactive machine learning literature focuses on how
best to integrate expert human judgement into machine learn-
ing systems. To achieve this, users visit and revisit a sequence
of examples on which to provide human judgement [13, 17].
These systems amplify the abilities of people to make judge-
ments that are useful to a machine learning system. They
do this by supporting a number of design objectives [5]: (1)
helping the user pick the next example to judge; (2) helping
the user to decide what judgement to give; and (3) helping the
user see how their judgements impact the machine learning
model. We are interested in the second objective, despite a
stronger focus in the literature on the first and third.

Concept evolution suggests that the boundaries between labels
can shift depending on context. For instance, in a website
topic classification task, what exactly constitutes a website
about travel, and how does it differ from a website for expa-
triates? The lack of clarity of where the boundaries are can
lead to inconsistent labelling of training data which decreases
the accuracy of machine learning results. Techniques such as
structured labelling [25] help people evolve and concretize
concepts through repeated viewing and categorization of ex-
amples with reference to other examples, supporting boundary
definition.

The systems that support concept evolution reported in the lit-
erature draw upon visual salience in static media to help people
organize their concepts and in doing so scaffold the decision
making process. For example, structured labelling [25] allows
users to spatially organize groups and tag them while deter-
mining whether they are part of a particular concept. CueFlik
[14] enables people to form image search queries by bringing
together training examples in the same spatial frame. BrainCel
[35] provides multiple coordinated views of the model being
built to support machine learning in spreadsheets. Capitalis-



Figure 1. SorTable system.

ing on visual salience in static media is potentially useful for
continuum labelling, but we needed to extend it to video and
address the issue of scale to apply it to our problem.

Paired Comparison
Pairwise comparison, described earlier, is a technique to sup-
port users in their decision-making through relative preference
judgements. People are given paired data points and asked
to express preference or ranking, such as “better than.” After
every combination of pairs has been labelled, a ranked order
of preference can be determined. This technique, also referred
to as two-alternative forced choice, has been used substantially
in the psychology literature, common approaches including
Bradley [8] and Thurstone [36]. There have subsequently been
many variations and applications of this approach, from under-
standing the extent of visual perception [2] to understanding
decision-making [7]. Pairwise comparison is closely linked in
psychological literature with another set of techniques gener-
ally grouped together under the name of card-sorting. These
techniques ask participants to physically group cards as a
method of concept articulation. One example is Q sorting,
which enables the systematic study of subjectivity, such as a
person’s viewpoint, opinion, or beliefs [37].

Pairwise comparison has also been used as a mechanism for
determining labels. Carterette et al [10] demonstrate that
this method can facilitate judgements beyond binary ones for
information retrieval applications, but the method does not
scale to large datasets even when optimisations are made to
the pair selection strategy. Preference judgements have also

been used as the basis for a game to motivate labelling of
data [6]. In this case, label agreement is achieved between
cooperative players by reducing the number of images shown
until agreement is reached.

SYSTEM DEVELOPMENT
SorTable System Design
SorTable is our interface for labelling videos to be used in
machine-learning applications that rely on expert-provided
continuum labels. It was designed to improve the efficiency-
consistency trade-off by enabling setwise comparisons of
videos. Users are given multiple sets of videos to sort on a vir-
tual touch-enabled table, ordering them from least to greatest
or stacking them to indicate equality. This design builds upon
the human ability to make consistent relative judgements (as
demonstrated in pairwise comparison) and is inspired by the
use of visual salience in concept evolution tools.

Sets are not independent of each other. Every set shares a
proportion of its constituent videos with at least some other
sets. This enables us to apply the TrueSkill algorithm [20],
originally developed for ranking gamers, which aggregates the
sorted sets into a rank order of all videos. It does so through
a probabilistic Bayesian approach, which efficiently predicts
pairwise judgements between videos which have never co-
occurred in a set.

SorTable aims to increase efficiency without losing substantial
consistency through three specific features. First, the presenta-
tion of videos in sets builds upon human short-term memory
to make multiple comparisons at once. Second, the ability



to create stacks to indicate that videos are the same can sub-
stantially reduce the number of comparisons as the labeller
need only refer to one video in the stack when sorting. Third,
SorTable facilitates mixed-strategy sorting, including the auto-
matic display of the left and right neighbours of the currently
selected video, and the ability to compare any two videos with
a two-finger gesture. All interactions are touch based.

System Description
Sets of videos are presented to the user as thumbnails, with
three enlarged for viewing as in Figure 1. The center video
is highlighted in red and its left and right neighbours in light
and dark blue respectively. Tapping any thumbnail selects that
video as the central one, displaying its respective neighbours.
Thumbnails can be dragged for sorting, snapping to a regular
grid when dropped. A ‘drop target’ line indicates the position
they will assume when the finger is lifted. The enlarged videos
themselves can dragged left and right for reordering.

Videos can be stacked by dragging thumbnails on top of, or
underneath, one another to indicate that they are equal. There
is no limit to stack size. Entire stacks can be dragged using
the stack handles above each stack. Any two videos can be
compared on an ad-hoc basis with a two-finger gesture. With
the left finger touching one thumbnail, the right finger can
be used to tap on other thumbnails comparing several videos
with the first in rapid succession. The standard behaviour of
showing neighbours can be resumed by tapping anywhere else
on the screen. Thumbnails that have not been touched are
marked with a bright blue circle in the corner. This fades
continuously over three touches, helping ensure that labellers
do not leave videos uninspected.

We used the multiplayer TrueSkill algorithm variant with ties,
which treats the equality judgements arising from stacks with
mathematical rigour [20, 1]. The TrueSkill algorithm was
chosen over alternatives such as the Bradley-Terry [8] or
Thurstone models [36], more commonly used in psychology
literature, as it is well suited for situations with few raters
(clinicians) and many items to rate (patients). It has faster
convergence, naturally handles draws (no difference between
patients) and enables more than two comparisons at a time
(setwise). Each set was considered an 8-player free-for-all
game. Following standard practice for applying TrueSkill,
each video’s “score” was initialised with an arbitrary default
mean of 25 and standard deviation of 25/3. These scores are
internal to TrueSkill, and are unrelated to the standard clinical
EDSS sub-score our system ultimately produces.

The system is implemented using web technologies. Any set of
videos can be loaded, along with a specification file containing
additional parameters such as set size. We used a Lenovo
Yoga touchscreen laptop for development, and conducted our
studies on a 27 00 touchscreen with 1920⇥1080 HD resolution.

Key Design Decisions
To explore key design decisions, we undertook initial usability
testing with three of our ASSESS MS team neurologists. Three
sessions were held over a 4-week period. Interaction with the
system was observed and audio recorded, ensuring that no
patient data was captured in observance of hospital rules.

We also ran a number of simulations to explore potential pa-
rameter values. Using a dataset of 50 videos in which we had
previously established a reliable ground truth through pair-
wise comparison done by 11 neurologists, we simulated set
outcomes using a subset of the pairwise comparison data as a
representation of a single neurologist’s judgment.

This initial work helped us understand: (1) ideal composition
of the set, including number and type of videos; and (2) the
usability of the comparison interactions we provided.

Set Composition

During usability testing, we tried sets of 5 as well as 10 patient
videos. Neurologists felt that sets of 5 were too easy, especially
if there were many with the same label, while sets of 10 were
highly taxing. The neurologists felt sets of 7 to be ideal.

Set selection is also influenced by the set overlap size, that
is, the number of videos per set that have already appeared
in another set. A larger overlap size provides more effective
pairwise comparisons and should be more accurate (as more
information is shared between sets, which aids TrueSkill’s
estimation), but it also increases the total number of sets to be
labelled. We performed a parameter search using simulations
to select set size, overlap size, and set composition strategy.
Figure 2a demonstrates that the Pearson correlation between
the known ground truth and the simulated games changes as a
function of set size and overlap size.

We also explored how the similarity of videos in terms of
disease severity that composed a set would affect both human
and algorithm sorting performance. We considered specifically
whether we should provide sets with similar or varied initial
ratings previously provided by a clinician. Similar sets could
potentially increase speed by enabling more stacks and more
efficient use of TrueSkill. Varied sets, however, were less
cognitively taxing for clinicians during usability testing and
completed more quickly. Figure 2 shows that more varied sets
result in higher correlation to ground truth.

Balancing the clinicians’ reported experience and the results
of the simulations, we chose to have a set size of 8, an overlap
of 3, and a varied strategy for set composition.

Comparison Interactions

There are three comparison interactions. The user can choose
one video for display with its immediate neighbours, encour-
aging constant pairwise comparison between neighbouring
videos. We considered enabling participants to independently
choose three videos for comparison, but felt this would un-
necessarily increase interactional friction. Our approach of
enforcing which videos were available to compare employs a
design-with-intent philosophy [29]. Usability testing showed
that this supported a strategy in which the user started at one
‘end’ of the set and watched all videos in a systematic order
through to the other ‘end’ before sorting.

We developed a second comparison interaction for more ad-
hoc video comparison after our first usability test. We noted
that one participant would compare a video against several
others to determine where it should be placed or stacked. With-
out an explicit way to choose a second video, the participant



Figure 2. Illustration of the correlation of the simulated games (y-axis) to the known ground truth for different set size (graphed lines) and overlap size

(x-axis): (a) videos with similar disease severity; (b) videos with varied disease severity.

had to rely on their memory or temporarily make two videos
neighbours. We therefore added the two-finger gesture to en-
able rapid comparison of two specific videos, allowing us to
accommodate this less-frequent, but nonetheless important,
alternative flow.

The third comparison approach enabled the use of stacks to
demonstrate equality of judgement. In our initial usability
testing, two of three clinicians found stacks useful. Stacks are
also efficient as they reduce the effective set size and thereby
cognitive load. To encourage the use of stacks, we imple-
mented a ‘stack handle’ following the first usability session.
This allows users to move complete stacks around with the
handle located at the top of stack.

EVALUATION

Study Design
We conducted a within-subjects study to compare the
efficiency-consistency trade-off between pairwise compari-
son and setwise comparison. More specifically, we assess
whether we improve the efficiency of the labelling task with
an acceptable deterioration in label consistency. We asked the
following research questions:

• RQ1: Does setwise comparison improve the efficiency-
consistency trade-off when compared to pairwise compari-
son?

• RQ2: Is the cognitive load of setwise comparison compara-
ble or less than pairwise comparison?

• RQ3: What interaction strategies were employed during
setwise comparison?

Recruitment

A convenience sample of eight neurologists with experience
with multiple sclerosis and not involved in the ASSESS MS
project team were recruited. They covered a wide span of ex-
perience levels (Median: 6y, Range: 1-26y) and age (Median:

35y, Range: 28-54y). None had prior experience labelling pa-
tient videos. The participants were all from the same hospital
as it is not permitted to take the patient videos offsite.

Protocol

Participants were asked to rate a set of 40 patient videos using
both pairwise and setwise comparison. The SorTable system
was used in both cases, with the set size specified at 2 and 8 for
the pairwise and setwise conditions respectively. Videos of the
Finger Nose test, a neurological test of tremor and upper body
dysmetria, were used. The same videos were compared by all
participants in both conditions to enable exact calculation of
consistency and efficiency in a small sample size. To reduce
the possibility of clinicians remembering patients, we had a
minimum of three days between conditions. Starting condition
was counterbalanced.

Before each condition, a short pre-scripted tutorial was read
out by the study facilitator and the participant was prompted to
try each interaction technique. Before beginning the study, two
practice sets were done to reduce learning effects. Following
the completion of the comparisons, the participants were asked
to fill out a questionnaire that included the full NASA Task
Load Index [18] as well as three open-ended questions.

Analysis

To address RQ1, we calculated consistency and efficiency for
each condition. Consistency was evaluated first through a
global intraclass correlation coefficient (ICC type “A-1” [30]),
which reports the absolute agreement of scores across differ-
ent labellers on a scale from 0 (no agreement) to 1 (perfect
agreement). We also calculated average ICC, by averaging
the Pearson correlation between every combination of two
labellers for each condition. Efficiency was measured as the
total time the participant needed to complete the task. Aver-
age ICCs were compared by an unpaired t-test, while mean
time to completion was tested for equality by a paired t-test.
Normality was established with the Shapiro-Wilk test.



Global ICC Average ICC Task Time (min)

mean±sd [min�max] mean±sd [min�max]

Pairwise 0.70 0.77±0.1[0.64�0.94] 77.86±14.53[52.79�95.84]

Setwise 0.83 0.85±0.07[0.72�0.95] 23.80±8.12[13.28�36.06]

t-test p = 5 ·10�4 p = 4 ·10�5

Table 1. Consistency and efficiency of pairwise and setwise comparison of 40 videos.

We used the full NASA Task Load Index to measure cognitive
load in both conditions to address RQ2. It is a validated, multi-
dimensional scale which provides a self-reported measure of
overall workload associated with a task. Participants rate six
dimensions on an analog scale with 20 unnumbered sections:
mental demand, physical demand, temporal demand, perfor-
mance, effort, and frustration. A weighted average of these
is then calculated after participants rank the perceived impor-
tance of each dimension in creating cognitive load through
pairwise comparison. We compare both the overall score of
cognitive load as well as each dimension separately (i.e. the
raw TLX calculation), using paired t-tests. In addition to a for-
mal measure of cognitive load, we asked the participants three
open-ended questions: (1) What three words would you use
to describe this system to a colleague? (2) What did you like
most about the system? (3) What did you like least about the
system? This data was synthesized and reported in summary
form.

Addressing RQ3, we look at the frequency of the three special
interaction techniques: video swiping (to change order); stack-
ing, and two-finger comparison. We then looked holistically
at the sorting process, visualizing how the thumbnails in each
set were re-ordered over time. We manually inspected these
visualizations for interaction patterns.

Results
Efficiency-Consistency Trade-off

Setwise comparison was significantly more efficient than pair-
wise comparison. Task time was reduced by an average of
54 minutes (p = 4 · 10�5). Although a set took a median of
127.8s and 4.2s for setwise and pairwise comparison respec-
tively, the smaller number of sets in setwise comparison (10 vs
858) made a substantial difference to total task time for all par-
ticipants as shown in Figure 3. Setwise comparison also had a
lower total task time standard deviation than pairwise compar-
ison, 6.9m versus 14.5m, suggesting higher predictability of
task time.

As shown in Table 1, setwise comparison is also more consis-
tent than pairwise comparison. Setwise comparison has both a
higher global intraclass correlation coefficient (ICC) as well as
a higher average ICC (p = 5 ·10�4) among pairs of labellers.
Consistency of pairwise labelling is similar to values in our
earlier experiments. Our data shows no trend of improved
consistency in the second condition, suggesting that there was
no meaningful learning effect between the two conditions.

Figure 3. Total task times.

Figure 4. Mean scores for raw TLX measures.

Cognitive Load

There were no significant differences between the setwise and
pairwise conditions on the NASA Cognitive Task Load Index
or on any of the six dimensions that it comprises. We see
surprisingly similar scores as shown in Figure 4, except for a
notable reduction in temporal demand and effort for setwise
comparison.

Responses to the open-ended questions were positive, without
being particularly revealing. Participants mentioned that the



Figure 5. Contrasting sorting strategies employed during setwise comparison. Left: “insertion”-style sorting; Right: “bubble”-style sorting. Each

colour represents a thumbnail and the y-axis represents time. Stacks are depicted by shared cell.

software was intuitive and easy to handle. Most participants
commented on the use of a touchscreen device and the ability
to drag and drop efficiently. There was a common complaint
that videos were too small, with proposition that the screen
real estate could have been used differently or that an option
to zoom could have been available. The comments made were
the same for pairwise and setwise comparison.

Interaction Strategies

We proposed three interaction strategies in our design. We
found that swapping of neighbouring enlarged videos was
done by 3 labellers in 60% of their sets. Swaps were most
commonly done in the beginning of the labelling process, but
one person used it throughout. The two-finger comparison
gesture was used by 5 of the labellers, 4 regularly. The gesture
was used an average of 3.2 times per set with a range of 0-12
times. Stacks were also heavily used with only 6 (of 80) sets
not containing stacks. Most sets (53%) had only one stack
per set. There were, however, 11 instances in which a set had
three stacks. Most commonly stacks contained two videos, but
ranged up to six videos.

Through visualizing the activity, we consider whether there
are distinguishable strategies for comparing videos in sets. We
see a marked difference in the number of interactions, which
included moving videos using thumbnails, moving stacks,
swapping the enlarged videos in the upper interface, and en-
gaging the two-finger comparison gesture. On one extreme,
participant 7 had only 153 interactions over 10 sets, while
on the other extreme, participant 3 had 323 interactions, over
twice that of participant 7. The other participants ranged in
between and we could group them as follows. Low interaction:
participants 2 and 7 (median moves: 14.5-15); Moderate inter-
action: participants 4, 5, 6, 8 (median moves: 20-23.5); and
High interaction: participants 1 and 3 (median moves: 29-32).

The interaction levels reflect distinct strategies that can be seen
visually in Figure 5. Some participants viewed a large number
of videos and relied on their memory to then sort them, inter-
acting with most videos only once. This was often achieved by
dragging videos that were clearly on the edge of the spectrum
before ordering the middle videos, a strategy which is similar
to the insertion sort algorithm. Others did rapid comparisons
and swaps of immediate neighbours, bubbling videos to the
correct position, reminiscent of the bubblesort algorithm.

The neurologists were fairly consistent in their strategy, but
strategies did not have a clear connection to experience level or
starting condition. There was also no clear connection between
strategy and completion time or consistency. For example,
participants 2 and 3 had equal completion times but did 171
versus 323 actions, respectively. Likewise, participants 1 and
7 had similarly high consistency (.88 and .9 respectively), but
were in the high and low interaction categories respectively.

DISCUSSION
Setwise Comparison
We introduced the concept of setwise comparison to make the
relative judgements that provide consistency in pairwise com-
parison tractable at the scale needed for continuum labelling in
computer vision. Setwise comparison was significantly more
efficient than pairwise comparison. If we consider how these
two methods scale from 40 videos to 400 videos, a modest
training set size for these kinds of applications, pairwise com-
parison would take approximately 100 hours, whereas setwise
comparison would take only ⇠3.5 hours. The substantial im-
provement in efficiency comes not only in faster completion
times, but in the use of the TrueSkill algorithm so that the
method scales linearly. We would expect this method to scale
up to thousands of videos, a reasonable training data set for
these types of applications.



As is evident from our research questions, our initial assump-
tion was that there would be a trade-off between consistency
and efficiency between setwise and pairwise comparison. We
only expected to approximate the consistency of labels yielded
by pairwise comparison. We were surprised that setwise com-
parison was not only more efficient, but also significantly
more consistent. The setwise ICC of 0.83 is considered ex-
cellent in the medical field, defined as a result above 0.8 [19].
While pairwise comparison improves when labels are com-
bined across labellers, setwise comparison stays relatively
steady with high average ICC across labellers. This suggests
that multiple labellers are not needed, a particular advantage
for a task requiring expert labellers.

We also saw no difference in cognitive load either globally or
on specific dimensions, suggesting that setwise comparison
was not substantially more mentally demanding than pairwise
comparison. We had expected that the cognitive demand on
short-term memory might make setwise comparison harder,
but this was not the case. The fact that mental demand is not
highlighted in this test inspires confidence that consistency
may scale well to large data sets.

We have presented positive results in a comparison of pair-
wise and setwise approaches, albeit with a small sample. It
is possible that we might have had more pronounced differ-
ences on the cognitive load measures with a larger sample
size. Nonetheless, the size is realistic to continuum labelling
tasks which require expert labellers. We would expect that our
system could be applied to other continuum labelling prob-
lems with a similar set-up. It may be that data requiring less
detailed judgement may allow for larger sets or an increased
number of enlarged videos.

The fact that our data cannot be taken out of the hospital in
which it is generated indicates next steps. For example, it
would be interesting to explore how we might combine data
ranked in different settings (which cannot be shared) into a
complete ranking to be used in ASSESS MS. This raises further
research directions, such as the development of an appropriate
overlap strategy that could enable the combination of data sets
using TrueSkill.

Reflections for Interactive Machine Learning
The development of the SorTable system for setwise com-
parison builds on the interactive machine learning literature,
especially concept evolution. A key aspect of concept evolu-
tion is to address that concepts being used as ground truth to a
machine learning algorithm may shift with further comparison.
This is manifested in our scenario in that the boundaries of a
particular rating category (e.g., the boundary between a motor
ability label of ‘1’ versus ‘2’) can never be exactly determined.
SorTable dispenses with the need for people to have such delin-
eated concepts of a motor ability, by requiring only a relative
relationship between videos. While the problem we solve here
differs from most interactive machine learning ones, which
aim to produce a reusable model, there is something to be
learned from reflecting on our approach.

Structured labelling, a concept evolution approach, primarily
utilises visual salience of static media and the re-visiting of

examples to enable consistent labels. Visual salience becomes
problematic when the issue of interest is temporally displayed
as in our case. Our log data suggests that concept evolution
was achieved in several ways. Some participants used the
specific gestures of swapping neighbours or using the compar-
ison gesture to enable direct comparison and decision-making.
Others relied on visual cues and short term memory provided
by the thumbnails. Although different strategies, in both cases
people were able to efficiently scaffold their own decision-
making process without an impact on mental demand.

Scale for video labelling is also something that remains chal-
lenging in the interactive machine learning literature, but was
necessarily designed for in setwise comparison. We consid-
ered how a person’s abilities could be amplified by offloading
some of the work onto the machine. We do this with the
TrueSkill algorithm. Instead of having a person label every
point, we ask them to sort data points and provide labels for
only a few. The algorithm infers the rest of the labels. Tools
have been developed for labelling action in videos that use the
machine to select important key frames to reduce the scope
of the task [4]. This is an equivalent notion. Concept evolu-
tion could focus more on designating relationships, such as
transitivity, rather than trying to gain one label per data point.

CONCLUSION
It is increasingly common for novel applications to build upon
machine learning. This necessitates the tedious task of la-
belling hundreds or thousands of data points to provide a
ground truth dataset with which to train the model. We il-
lustrate why this is challenging for computer vision domains
such as movement or affect analysis, which require single,
real number labels for videos, or what we call continuum
labels. We proposed a solution, setwise comparison, on the
basis that humans have greater abilities for relative judgements
than absolute ones. Setwise comparison was implemented in
the SorTable system, with which we demonstrated that the
the setwise comparison process resulted in significantly better
label consistency and efficiency than pairwise comparison for
ASSESS MS patient videos.

For the most part, computer vision researchers have been re-
sponsible for finding ways to obtain labelled data for their
applications. However, what we demonstrate in this paper is
that through the application of good interaction design princi-
ples, and building on an understanding of human capabilities,
we have been able to effectively address an important prob-
lem previously left untackled in the computer vision literature
because of its apparent intractability.
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