
Towards spreadsheet tools for end-user music programming

Advait Sarkar
Computer Laboratory

University of Cambridge
advait.sarkar@cl.cam.ac.uk

Abstract

SheetMusic, an early-stage prototype, explores how spreadsheets can be used as accessible end-user
tools for music programming and data sonification. This design probe uncovers many interesting ques-
tions: what are the primary advantages of the spreadsheet paradigm in this context? Should such a tool
be regarded as a musical instrument, or as a way to create musical ‘programs’ with emergent runtime
behaviour? How can musical experiences be ‘programmatic’? How sophisticated should provisions
for scripting the tool be? How can time be represented? Each issue is considered in turn, drawing on
previous work in live music coding, end-user programming, and the current SheetMusic implementation.

1. Introduction

Figure 1 – The SheetMusic prototype.

SheetMusic is an exploration of how formulae with musical sound effects can be integrated into the
spreadsheet paradigm. Figure 1 illustrates the current, early-stage prototype. Apart from the play/pause
controls, it is largely indistinguishable from a regular spreadsheet. Indeed, the prototype can be used
as a plain spreadsheet without any musical capability at all. It is implemented as a web page, and each
cell can contain arbitrary Javascript code, consequently all native Javascript functions are available, and
further libraries can be loaded in from the console.

However, this spreadsheet is also imbued with music and sound-generation capabilities, by virtue of a
simple library of note and sequence synthesis functions built on top of the web audio API. The design
of this library is one of the central, emergent, and open design questions raised by this exercise. Cur-
rently, functions are available which play a specified note (e.g., p(’c 5’)), or a sequence of notes
(e.g., s([’c 5’, ’g 4’, ’a 4’, ’e 4’], 1)), or which loop a sequence of notes defined by
a range on the spreadsheet (e.g., pLoop(’viola’,’B1’,’B8’)). As with regular spreadsheets,
arguments can be passed directly or can be references to other cell values. Further library functions pro-
vide easy access to arrays containing the notes of chords and scales. A global tick variable increments

228



once every tick; the time elapsed between ticks can be set by editing the global tempo variable. At
each tick, the spreadsheet is re-evaluated. The tick variable is accessible in the spreadsheet, so the
formula if(tick%2==0) p(’snare’) else p(’kick’) would produce a simple drum beat
consisting of alternating kick and snare sounds. Cells are also re-evaluated upon edits, as in a regular
spreadsheet. This implementation of time borrows directly from spreadsheet stream processing conven-
tion, and will be discussed in greater detail.

The precise specification of music/sound-generating library is still emergent. As each cell can be used as
an environment for arbitrary Javascript code, it may be argued that the library is irrelevant as the user can
embed any desired functionality directly into the spreadsheet, or inject it into the runtime environment
through the browser console. However, rich standard library support (or the lack thereof) is as much
a part of the experience of programming in a certain language as the language syntax itself. This fact
is not lost on the programming community; standard library support is what allows, for instance, the
programming language Python to boast of having “batteries included”. Consequently, future versions
of SheetMusic will still retain the property of being arbitrarily-scriptable, but it should be possible to
create sophisticated musical programs without extensive custom Javascript code, showcasing clearly the
advantages of the spreadsheet paradigm.

This direct use of spreadsheets provides two major advantages for music coding, beyond the mere fact
that implementation can be live (Tanimoto, 1990), allowing for direct feedback when the program is
edited. The first is that the spreadsheet paradigm is well-known to be an excellent interface for novice
end-user programming. The second is that the grid formalism allows for rich secondary notation to
be expressed through the layout of the spreadsheet. This is already common in business applications,
where a single sheet may contain several separate ‘regions’ of cells with strong semantic connotations,
separated by blank cells or highlighted in different colours, even though this separation is unnecessary
for the correct functioning of the spreadsheet.

2. Related work

Manhattan (Nash, 2014) is a grid-based music sequencer which shares many properties of spreadsheets.
In particular, the interface is laid out in rows and columns of cells, where cells can contain a number
of object types, including formulae. Where it deviates from spreadsheets is that some of the layout
is used to enforce a notion of time; each column represents a parallel stream of execution, and going
downwards through rows within a column indicates the flow of time; lower rows are ‘after’ higher
rows in the sequence. This basic control flow can be enriched using standard programming constructs
such as conditional branching and loops, through formulae. Unlike spreadsheets, each cell can contain
multiple formulae. Other grid-based languages, such as Piet and Al-Jazari (McLean, Griffiths, Collins,
& Wiggins, 2010) exist, but these are unlike spreadsheets, as the ‘cells’ of the grid cannot freely store
data and code interchangeably, and control flow is intimately linked to the layout of the cells. Visual
dataflow languages such as Texture (McLean & Wiggins, 2011) also have some commonalities with
spreadsheets.

Sonic Pi (Aaron & Blackwell, 2013) is a live coding platform for music, implemented as an embedded
Ruby DSL, with sounds generated by the SuperCollider synthesis server. As novice end-users form part
of the core audience for Sonic Pi, it is coupled with an IDE meant to mitigate the complexity associated
with programming. Sonic Pi is nonetheless a textual programming language, with the control flow of
music corresponding directly to the control flow of program execution. Other textual languages include
Impromptu (Sorensen & Gardner, 2010), Tidal (McLean, 2014), and ChucK (Wang, Cook, et al., 2003).

3. Programming language or musical instrument?

A central design question is whether SheetMusic is intended as a composition tool, a musical instrument,
or a programming language. This is a false trichotomy (Blackwell & Collins, 2005), but is a simplified
expression of the question: what sorts of artefacts are users expected to produce with this tool?

229



I would argue that variable output is the defining characteristic of a program. A program whose output is
fixed is merely a clever way of compressing that output data. In live music programming, it is possible
to represent a musical piece by explicitly coding individual notes as a sequence, but this is not the
standard approach. Instead, programming constructs such as data structures, conditionals, loops, and
subroutines are employed, which has a number of advantages: it makes the structure of the piece explicit,
it compresses the notation required to represent the piece (reduces verbosity), and increases the flexibility
of the program (reduces premature commitment). That being said, if the output of running this program
is fixed and independent of input, it is essentially equivalent to a hard-coded sequence of notes. It is
more interesting to consider cases where the musical output of a program is variable, and dependent on
its input. A program whose output is largely unaffected by a change in its input is less ‘programmy’
than one whose output is affected more. A closely related concept is cyclomatic complexity (McCabe,
1976), which quantifies the number of linearly independent execution paths through a program.

Moreover, I would argue that the defining characteristic of a musical instrument is a player with intent

and agency to musically affect the output of the instrument. Consequently, live music programming
is an instance of playing a musical instrument, as even though the intermediate source code instances
may be ‘fixed’ programs with invariable output, the player has the agency to change the program. This
distinguishes musical instruments from mere playback mechanisms; we would not consider someone
pressing the ‘play’ button on a record player to be playing a musical instrument, but someone hitting
‘play’ and ‘pause’ rapidly in order to create a slicing effect has made a musical instrument out of the
record player through intent and agency to musically affect the output.

SheetMusic could be used to store a sequence of notes (used as a composition environment), or play
a sequence of notes with agency (used as a musical instrument). However, since it also has the po-
tential to be used for designing music as an interactive, reactive, data-dependent experience (used as a
programming language), it is this latter use case that the design will be focused towards.

4. Applications

Two immediate application scenarios present themselves. The first application scenario is custom soni-
fiers for data; a few SheetMusic formulae could instantly create ‘auditory scatterplots’ or line graphs,
where data values are mapped to pitches and played in rapid succession – known to be highly perceptu-
ally effective for several types of analysis (Flowers, Buhman, & Turnage, 2005). Pitch mappings could
be tailored specifically to the data domain (e.g., a change in octave or key at some domain-specific crit-
ical threshold). This would enable simpler multi-modal data analysis, as well as improve accessibility
to data in spreadsheets for the visually impaired. Another application is as a prototyping tool for music
in interactive games such as role playing games. Music and sound are often linked in complex ways
to game state, from trivial applications such as sound effects for player actions, up to more complex
applications such as selecting soundtracks with different moods depending on the player’s location or
status in the game world. SheetMusic could be used to compose, test, and share such state-dependent
musical experiences, as a subset of game variables could easily be captured as cell values which are then
readily available for musical interpretation through the library functions.

5. Representing time

In SheetMusic, time passes independently of the spreadsheet, communicating its current value to all the
formulae in the spreadsheet once per ‘tick’. Notes and effects relying on sub-tick durations can currently
be expressed through stretching/squeezing and offset parameters. However, since this is an inconvenient
notation, it is expected that just as in setting the time signature and tempo of a musical score, the tempo
will be adjusted so that the duration of a tick corresponds to the smallest duration required to concisely
capture the majority of the piece. For instance, a musical piece set to a tempo of 40, but consisting
mainly of quavers, might be recast more ‘comfortably’ as a piece at tempo 80 consisting mainly of
crotchets – this is a matter of taste, convention, and interpretation, which does not have an effect on the
music denoted literally by the score.

230



The idea that time elapses independently of the spreadsheet layout, and that formulae recalculate either
on a publish/subscribe or polling basis is the main convention for stream processing in spreadsheets, as
implemented in Microsoft Excel’s native Real Time Data (RTD) feature1, as well as in several popular
stream processing add-ins.

This can be contrasted against Nash’s Manhattan, which sacrifices much layout flexibility by committing
columns to denote tracks which execute in parallel, and rows to represent time slices which execute se-
quentially going downwards. This approach was taken to build directly on the chronological grid-based
design of music sequencers, as the aim was to introduce greater spreadsheet programming capabilities
to users of such sequencers. SheetMusic takes the opposite approach as it has the opposite aim; to bring
greater musical programming capabilities to users of spreadsheets. By decoupling time, SheetMusic
frees the layout of the spreadsheet for use as arbitary secondary notation. Griffiths’ Al-Jazari decouples
time from the grid differently – in that system, agents are programmed to explore the grid and ‘play’
cells they occupy. McLean’s Texture is a 2D playground which employs proximity to infer control flow
– syntactic elements placed close together are automatically connected.

6. Conclusion

This paper has presented an exploration of spreadsheets as end-user music programming tools, illus-
trated through an early-stage prototype called SheetMusic. The primary advantages of the spreadsheet
paradigm in this context are direct manipulation, liveness, and the ability to use the layout of the spread-
sheet as secondary notation. SheetMusic can be regarded as a musical instrument, but has potential as a
tool for creating highly data-dependent musical ‘programs’ with emergent runtime behaviour.

7. Acknowledgements

Thanks to Alan Blackwell and Luke Church for discussions on the topic. The author is supported by an
EPSRC industrial CASE studentship sponsored by BT Research and Technology, and also by a Robert
Sansom scholarship from the University of Cambridge Computer Laboratory.

8. References

Aaron, S., & Blackwell, A. F. (2013). From sonic pi to overtone: creative musical experiences with
domain-specific and functional languages. In Proceedings of the first ACM SIGPLAN workshop

on Functional art, music, modeling & design (pp. 35–46).
Blackwell, A., & Collins, N. (2005). The programming language as a musical instrument. Proceedings

of PPIG ’05 (Psychology of Programming Interest Group), 3, 284–289.
Flowers, J. H., Buhman, D. C., & Turnage, K. D. (2005). Data sonification from the desktop: Should

sound be part of standard data analysis software? ACM Transactions on Applied Perception (TAP),
2(4), 467–472.

McCabe, T. J. (1976). A complexity measure. Software Engineering, IEEE Trans. on(4), 308–320.
McLean, A. (2014). Making programming languages to dance to: live coding with tidal. In Proc. 2nd

ACM SIGPLAN workshop on Functional art, music, modeling & design (pp. 63–70).
McLean, A., Griffiths, D., Collins, N., & Wiggins, G. (2010). Visualisation of live code. Proceedings

of Electronic Visualisation and the Arts 2010, 26–30.
McLean, A., & Wiggins, G. (2011). Texture: Visual notation for live coding of pattern. Ann Arbor, MI:

Michigan Publishing, University of Michigan Library.
Nash, C. (2014). Manhattan: End-user programming for music.
Sorensen, A., & Gardner, H. (2010). Programming with time: cyber-physical programming with im-

promptu. ACM Sigplan Notices, 45(10), 822–834.
Tanimoto, S. L. (1990). Viva: A visual language for image processing. Journal of Visual Languages &

Computing, 1(2), 127–139.
Wang, G., Cook, P. R., et al. (2003). Chuck: A concurrent, on-the-fly audio programming language. In

Proceedings of International Computer Music Conference (pp. 219–226).

1
https://support.microsoft.com/en-us/kb/285339

231


