
End-user encounters with lambda abstraction in
spreadsheets: Apollo’s bow or Achilles’ heel?

Advait Sarkar1,2, Sruti Srinivasa Ragavan1, Jack Williams1, Andrew D. Gordon1,3

1Microsoft Research, Cambridge, United Kingdom
2University of Cambridge, United Kingdom
3University of Edinburgh, United Kingdom

{advait, a-srutis, jack.williams, adg}@microsoft.com

Abstract—The value of computational abstractions to non-
expert end-user programmers is contentious. We study reactions
to the LAMBDA function in Microsoft Excel, which enables users
to define their own functions using the spreadsheet formula
language, through a thematic analysis of nearly 2,700 comments
posted on the Reddit, Hacker News, YouTube, and Microsoft
Tech Community online forums. We find that computational
abstractions are viewed both as helpful and harmful, that users
encounter learning and understanding barriers to applying them,
and that there are deficiencies and opportunities in tooling such
as in formula editing, versioning, reuse and sharing. We find
that the introduction of LAMBDA prompts new debate around
whether spreadsheets are code, whether writing formulas can be
considered programming, and whether spreadsheet users identify
themselves as programmers.

Index Terms—human-computer interaction, content analysis,
end-user software engineering, functional programming

I. INTRODUCTION

In December 2020, the LAMBDA function was made avail-
able to Excel spreadsheet users, enabling them for the first
time to create computational abstractions in spreadsheets,
by defining new formula functions using the language of
spreadsheet formulas alone [1–3].

This development is of interest to end-user programming
research because, despite the status of the spreadsheet as the
most widely-used programming environment, no commercially
dominant spreadsheet package had implemented a language-
native method for defining new functions; prior solutions
relied on parallel scripting languages. Thus, the spreadsheet
formula language remained an anomaly: the only widely-
used programming language that did not support subroutine
definition since the invention of subroutines in the 1940s [4, 5].

The limitations of the lack of a native computational ab-
straction in spreadsheets are well-documented (Section II). In
response, researchers have explored various abstraction mech-
anisms. The Forms in Forms/3 spreadsheets can be invoked as
subroutines [6], and the design of sheet-defined functions [7, 8]
demonstrates the integration of such abstractions into conven-
tional spreadsheets. Nevertheless, such abstraction techniques
were not implemented in commercial spreadsheets.

To deal with these limitations, users (with sufficient ex-
pertise) either resorted to using abstraction mechanisms of-
fered using alternative programming paradigms (such as VBA

macros in Excel, or Javascript custom functions in Google
Sheets), or installing add-ins which introduced new language
features, or alternating between spreadsheets and other pro-
gramming languages [9]. Alternatively, some users developed
workaround craft practices, such as the creation of templates
for sections of grid that could be copied and pasted as self-
contained computational abstractions [10], or built ‘megafor-
mulas’: elaborate formulas constructed as individual parts but
eventually ‘rolled up’ (nested) into a single cell for reuse.

Despite such evidence of abstractions in real-world spread-
sheets, and the promise of lambda abstractions, it is unclear
prima facie whether the LAMBDA construct is a net gain for
end-user programmers. For example, abstraction can make
programming more powerful, and programs more concise and
intelligible; on the other hand, they can make programs hard to
understand, and poorly-considered application of abstractions
can cause problems for downstream users of programs [11].

The introduction of such an abstraction capability to spread-
sheets therefore raises two key questions:

• What are the implications of computational abstractions
for the end-user experience of spreadsheets?

• What barriers do end-user programmers face when learn-
ing and using abstractions, and what strategies do they
employ to overcome them?

To investigate these questions, we analysed discussions from
online communities about the LAMBDA function in Microsoft
Excel (Section III). While our analysis does not yet answer
these questions in depth, our findings identify a broad set of
phenomena, helping to map and scope further study.

We find several implications for the user experience of
spreadsheets, such as the potential for abstraction to help
as well as hinder comprehension, and the inadequacy of
formula authoring and management tools; we find that users
encounter several barriers to applying these abstractions and
employ several strategies to address them; and we find that
computational abstractions play a crucial role in the formation
of user identities as programmers (Section IV). Thus, the
lambda abstraction in spreadsheets can either be a powerful
tool, as the golden bow of Apollo, or it can be an Achilles’
heel, weakening comprehension and community participation.

978-1-6654-4214-5/22/$31.00 ©2022 IEEE

II. BACKGROUND

A. The Excel LAMBDA function

Lambda abstraction is a concept from the lambda calculus,
introduced by Church as a foundation for mathematics [12,
13], and long considered a foundation for programming lan-
guage concepts [14, 15]. Its implementation in Excel is via a
formula function with the same name. To distinguish between
the concept of lambda abstraction (as well as specific instances
of function values, also known as lambdas), and the Excel
function, we style the Excel function as LAMBDA.

The LAMBDA function takes as arguments a list of parame-
ters followed by a formula that may refer to those parameters.
For example, the following call creates a lambda that adds two
numbers: =LAMBDA(x,y,x+y).

Placing such a call to LAMBDA in a cell produces an
error, because in the Excel implementation, a function value
cannot be the result of a cell. Instead, the lambda can
be directly invoked following its creation: one can write
=LAMBDA(x,y,x+y)(2,3) in a cell to yield the result 5.

To introduce a new user-defined function using a LAMBDA
formula, a name can be assigned to the formula using
the name manager.1 It can then be invoked via the name.
For example, one can assign the name AddNumbers to
=LAMBDA(x,y,x+y) and invoke it, within a cell, as
=AddNumbers(2,3) to yield the result 5.

B. Abstraction in end-user programming

In the Cognitive Dimensions of Notations framework, Green
and Petre define programming abstraction as the “grouping
of elements to be treated as one entity” [16]. Data abstrac-
tions, such as arrays or tables, allow us to perceive and
operate on a group of data as a single entity. Control or
computational abstractions include conditionals, loops, and
subroutines. LAMBDA functions fall into the latter category.

In Cognitive Dimensions terms, a notation can be
abstraction-hating, abstraction-tolerant and abstraction-hungry,
based on whether it prohibits, permits, or mandates the
creation of new abstractions by the programmer. LAMBDA
takes the spreadsheet formula language from being control
abstraction-hating to a control abstraction-tolerant language.

Control abstractions are difficult for end-user programmers
to reason about [17]. In notating multiple possible paths
of execution, they resist direct manipulation interfaces [18].
Moreover, end-user programmers avoid developing control
abstractions due to the attention investment required [19] and
challenges when learning and creating them [16]. Program-
ming by demonstration [20] and programming by example
[21] aim to address these difficulties by bridging direct ma-
nipulation and control abstractions through inference.

C. Proposed control abstractions in spreadsheets

Sheet-defined functions (SDFs) enable users to define their
own computational abstraction using the spreadsheet formula
language, much like LAMBDA [7, 22]. However, SDFs differ

1https://aka.ms/ExcelNameManager

from LAMBDA in that the function body can be defined from
a collection of cells, rather than a single formula.

A user study of SDFs found that while having a reusable
abstraction was helpful, in many cases participants preferred to
view the body of the function when invoked [8]. This contrasts
with the hiding of the body and intermediate values that is
inherent to the user experience of subroutines. In response,
Gridlets, a non-hiding computational abstraction, has been
proposed [10, 23] but not evaluated in an empirical study.

Another approach is to adopt practices from software de-
velopment to spreadsheet development, for better long-term
maintainability of spreadsheets. This is end-user software
engineering [24], end-user development [25], or spreadsheet
engineering [26]. ClassSheets [27] is an example of an engi-
neering abstraction developed to manage spreadsheet complex-
ity. End-user development research has also considered other
engineering practices such as testing [28].

D. Spreadsheet abstraction in practice

Complex models continue to be built using spreadsheets de-
spite the lack of a native computational abstraction, resulting in
challenges for correctness, maintenance and auditing [29]. In
response, spreadsheet users have adopted various alternatives.

Expert users build abstractions using extensibility capabil-
ities via a different language; examples are VBA macros in
Microsoft Excel and JavaScript extensions in Google Sheets.
Less expert users use third-party add-ins (e.g., Ablebits2,
ASAP Utilities3) that provide utilities for common tasks to
augment the built-in function library. Others delegate the
development of complex spreadsheets to others with more (or
different) expertise [30].

Users have also developed practices to manage the com-
plexity of the spreadsheet logic, to abstract away details and to
ease comprehension and maintenance. For example, the FAST
standard4 for spreadsheet financial modeling recommends that
formulas take no more than 24 seconds to explain, and to move
intermediate calculations to separate sheets.

However, the adoption and effectiveness of such standards
are limited. There is lack of awareness, and most spreadsheet
users lack formal training. Moreover, users are not motivated
to invest attention in learning and adopting these practices.
End-user programmers are typically task-oriented, and good
design is not a necessity for task completion [28].

III. METHOD

A. Approach

A feature like LAMBDA can be studied in many ways. An
experiment with authoring or comprehension tasks can evince
learning barriers or usability issues, while interviews with
experienced users (if such a group could be recruited) can yield
insights about LAMBDA use and practices in users’ workflows.

Our motivation in this study is to observe the interaction
of a broad range of end-user programmers with LAMBDA.

2https://www.ablebits.com/
3https://www.asap-utilities.com/
4https://www.fast-standard.org/

We were also interested in how perceptions of a new feature
like LAMBDA can develop and evolve in discussion amongst
end-user programmers, something that is difficult to study in
interview or experimental settings.

We therefore opted to study discussions of LAMBDA in on-
line communities. Communities such as Hacker News, Twitter
and GitHub form a social ecosystem in which programmer
relationships are formed and enacted [31] and studying them
“can yield insights into qualitative research topics, with results
comparable to and sometimes surpassing traditional qualita-
tive research techniques” [32]. Barik et al. applied this method
to investigate notions of play in programming [33], and we
draw upon the method of that study.

To our knowledge, ours is the first systematic qualitative
study of online communities in spreadsheet research.

B. Dataset

One researcher compiled a list of potential sources, consist-
ing of discussion threads matching the query “Excel Lambda”
using the search functions built into Hacker News, Reddit,
Microsoft Tech Communities and YouTube as of 20 January
2022. From the first three, we extracted discussion threads
related to “Excel Lambda”; for YouTube, the search returns
matches based on video titles and descriptions; the comments
associated with these videos were taken to be the corre-
sponding “threads”. Additional forum sources were inspected
but not included because they contained too few (fewer than
100) relevant comments. After removing false positives in the
threads by manual inspection, we gathered comments from the
remaining threads using automated scripts.

Our final dataset, summarised in Table I, contained 361
distinct threads containing a total of 6999 comments authored
by 3422 distinct user IDs. In total, this corpus contains 254,541
words of discourse either directly related to LAMBDA or
occurring in a thread about LAMBDA, with an average of 36.37
words per comment. The data spanned the time period from
3 April 2008 through 1 February 2022. Even though a small
proportion of these comments (6.9%) were written before the
initial public release of LAMBDA on December 3, 2020, we
retained them in case any interesting observations had been
made in users’ speculations about lambdas in spreadsheets.

C. Analysis

We used general thematic analysis with iterative coding and
codebook development [34].

Initially, three researchers independently open-coded the
same set of 400 comments (100 comments randomly sampled
from each of the four sources). Together the researchers gen-
erated 94 proto-codes, which after discussion and negotiations
led to an initial codebook of 29 codes. The three researchers
then independently re-coded the same sample with the code-
book. Manual inspection showed poor inter-rater agreement,
consistent with initial open coding rounds in prior studies [35].

The three researchers then discussed coding disagreements
and ambiguities and revised the codebook. They used the
updated codebook to independently code a fresh random

sample of 200 comments (50 from each source). The average
inter-rater agreement in this round was 0.60 (Jaccard index).
Disagreements were negotiated, and the codebook revised.

The final codebook, presented in Appendix A, consisted
of 28 codes; 14 code definitions were updated and 2 were
merged from the initial codebook following three rounds of
negotiations between researchers.

Non-English comments could not be reliably interpreted by
our English-speaking research team, and several comments
were not relevant to Lambdas (e.g., “great video”). We coded
these as irrelevant. These accounted for a sizeable fraction
of the data (YouTube: 62%, Reddit: 54%, Hacker News:
48%, Microsoft Tech Community: 66%). Thus the findings
presented in Section IV draw from a pool of 2697 comments.

With this final codebook, the dataset was divided into
four sets and one of four researchers (three being the coders
from previous rounds, the fourth an observer during previous
negotiations) coded each set. As standard validation practice
[36, 37], a sample of at least 10% of code assignments made
by each researcher was audited and re-coded by another; this
had an acceptably high agreement of 0.86.

Finally, the researchers grouped codes into larger themes,
discussed overall findings and selected representative quotes.

Our use of inter-rater agreement is primarily as a negotiation
aid, since our findings do not hinge on frequency counts. In our
analysis, codes are the process, not the product; our findings
are organised into themes which were synthesized from these
codes through the negotiation of expert researchers. In doing
so, we align with McDonald et al.’s state-of-the-art analysis
and guidelines for reliability in CSCW and HCI research [36].
To connect our findings to our codebook, direct references to
codes are presented in bold.

IV. RESULTS

LAMBDA has several implications for the user experience
of spreadsheets. It introduces a tension between abstraction
and comprehension, and commenters propose an array of craft
practices to cope. It also exposes limitations and opportunities
in tooling. Commenters encounter barriers in learning and
applying LAMBDA, and employ a variety of strategies to deal
with these barriers. Moreover, LAMBDA leads commenters to
critically evaluate their identity as programmers. Commenters
contrast LAMBDA with alternatives to situate it within the
landscape of available tools. Finally, we observed differences
in topics and concerns between the various communities we
studied. These findings are now detailed in turn.

A. Implications for the user experience of spreadsheets
1) The tension of abstraction: Abstraction is a double-

edged sword and commenters seized upon this tension. While
the benefits of LAMBDA are described in terms of improved
comprehension, debugging, and maintenance, in each of these
areas commenters spotted the potential both for improvement
and regression.

For example, commenters noted how LAMBDA could both
improve as well as impair comprehension, especially the
readability of individual formulas.

TABLE I
COMMENT DATA RELEVANT TO EXCEL LAMBDAS GATHERED FROM FOUR SOURCES: SUMMARY STATISTICS.

Words Comments Words per comment
mean (sd) / median Threads Unique user IDs Date interval

(first post - last post)
YouTube 99878 4750 21.03 (30.83) / 13 45 2760 2020/08/13 - 2022/01/27
Microsoft Tech Communities 97363 1446 67.33 (74.61) / 44 182 214 2017/12/10 - 2022/02/01
Hacker News 39206 441 88.90 (130.46) / 47 109 307 2008/04/03 - 2022/01/08
Reddit 18094 362 49.98 (95.22) / 24.5 25 141 2020/12/07 - 2022/01/21
Overall 254541 6999 36.37 (62.27) / 18 361 3422 2008/04/03 - 2022/02/01

[...] sometimes the excel formulas used are very long, convo-
luted, and hard to grok [...] Many cells often exist as calculation
cells only, used for intermediate steps which leads to even
more logic complexity. I’m excited to experiment with these to
try and simplify some of the long, previously-deemed-necessary
calculation methods. [HN176]

If I were to ever find someones sheet using Lambda, chances are
that I don’t know what are his values refering to [...] [YT2021]

Similarly, commenters anticipated benefits as well as issues
in debugging, testing, and auditing.

Wow this would make my reports easier to audit as the formula
is only defined once. Plus easier [...] to read. [YT1264]

As a financial analyst, my primary worry is that including
custom functions will make it hard for another analyst [...] to
review my projections [...] without the ability to easily audit a
LAMBDA, financial analysts will not adopt this feature. [M191]

Commenters postulated the implications of LAMBDA for
the maintenance of spreadsheets, in terms of not only the
modularity, but also the obfuscation they enabled.

It should make spreadsheets smaller in size, easier to maintain,
easier to audit and easier to use. [R49]

I really hope that’s true, but there’s lots of potential for the
exact opposite as people cram entire programs into a single
formula. [R77, responding to above.]

In general, commenters were divided on whether
LAMBDA functions were the Apollo’s Bow (“saving
grace”) or the “Achilles’ Heel” of spreadsheet development.

[...] The saving grace is that the calculation can be hidden
within a Named Lambda function [...] which is easier on the
eye. [M5]

[...] cells whose formulas are way too long to be put in a
single cell is Excel’s Achilles Heel (and a footgun that you are
nearly guaranteed to encounter [...]). This LAMBDA proposal
as written seems to exacerbate that problem [...]. [HN9]

To resolve these tensions, commenters proposed craft prac-
tices [38] for LAMBDA authoring and use.

2) Development of new patterns and practices: Spreadsheet
research has already documented the widespread phenomenon
of end-users and institutions advocating for development stan-
dards and best practices, whether explicitly borrowed from
software engineering or independently reinvented. LAMBDA is
no exception, prompting discussions and suggestions about
patterns and practices when authoring, naming, commenting,
and applying it.

Discussions on issues of authoring LAMBDA functions in-
cluded naming conventions and problem decomposition using
LET bindings for subexpressions.

[Referring to a function named COMBINEλ] I added the Greek
λ simply as a flag to assist me in reading the formulas [M5]
the definition of the Lambda function [...] within LET as a
locally-scoped function is something I have adopted [M5]

Others proposed separating error handling and core logic:
[M36] one approach [...] about handling error would be to have
Lambda in two layers [...] putting the pseudo code here,

MAIN = Lambda(n, IF(n <> int(n), “Enter integer”,
FIB(n)))FIB = Lambda(n,)

Another example is the use of partial application to deal
with limited default parameter capabilities:

[M9] you could approach it like so:

Area := LAMBDA(dim 1, LAMBDA(dim 2,
dim 1 ∗ dim 2))

Then partially apply the 2, you get:

=Area(2) => =LAMBDA(dim 2, 2 ∗ dim 2)

In turn, each of the above proposals sparked questions about
their effective use. For example:

to what extent should I use Names for a hierarchy of Lambda
functions in order to modularise the code? [M5]

3) Spreadsheet tooling and experience: Editing and reading
long formulas is already challenging [39]. LAMBDA encour-
ages an extended, programmatic style of formula writing that
throws into sharp relief the limits of the current formula
management environment, exposing several inadequacies of
tooling and user experience for formulas.

Commenters therefore drew comparisons explicitly and
implicitly to aspects of tooling well-established in the de-
velopment environments of professional programmers: syntax
highlighting, multi-line editing, parentheses matching, code
completions and definitions, and version control.

I don’t think name manager cuts it, they’ll need a formula
manager. Comments between coding lines and tooltips are going
to be necessary. Sharing, vital [...] [YT1045]

Functions that were developed and shared during discus-
sions often served a need so fundamental to some user’s
work that they expressed their desire for its inclusion in the
standard function library. Often this was motivated by the
assumption that a library function would be more performant
and comprehensible than a custom function.

Here is my upvote for the SPLIT function. I am very surprised
Excel 365 did not have that as a built-in [...] [R11]
You should use native functions where you can. They are faster,
more stable, and just better written codes. [...] If you ever need
to share your workbook with others, they will appreciate native
formula based approach over [custom functions] that they may
not understand. [R85]

B. Barriers to learning and using LAMBDA

Commenters encountered barriers that impaired or pre-
vented their use of LAMBDA. We found three out of six
programming learning barriers that Ko et al. observed [40]:
understanding barriers, where the LAMBDA behaviour de-
parted from their expectations; use barriers, which stopped
them authoring and applying LAMBDA; and many instances
of coordination barriers, where users could not combine
LAMBDA with other spreadsheet features, such as dynamic
arrays. For example:

[...] I cannot get even a really simple LAMBDA to work using
the Name Manager [...] [M37]

The slip was to use the Name [...] within its own definition [...]
[M5, responding to above]

What if the LAMBDA function has two variables, then how to
use these functions? [YT1985]

[...] I wasn’t aware at all that the parameter name [...] I chose
was actually referring to a very distant cell name in Excel
sheet. [...] [M26]

The causes of barriers ranged from misinterpretation of mar-
keting material, to lack of familiarity with programming jargon
that LAMBDA gets it name from, to mistaken assumptions
about its capabilities and intended use cases, to the differences
between LAMBDA and implementations in other programming
languages as anonymous functions.

Say I have a simple LAMBDA function := LAMBDA(number,
number+1). Is there a way to obtain the “number” by popping
out an input box with a prompt like “give me a number”? [M14]

you can’t use LAMBDAs like VBA to perform interactions or
manipulations of things outside the scope of the grid. [M9,
responding to above]

By lambda I thought its something related to wavelength of a
frequency. [YT1828]

To address and overcome these barriers, commenters em-
ployed a variety of strategies. Some asked for help, or searched
online documentation. For example:

1. Can I save my LAMBDA to Excel so that it can be accessed
in all workbooks instead of only the workbook it was created
on? 2. When my LAMBDA is called up, can it display the
parameters(syntax) the same way a native function does? [M35]

Others posted examples containing errors and asked others
for help in fixing the error. In debugging and repairing these
errors, commenters were able to get personalised and grounded
explanations for aspects of LAMBDA usage.

I defined a recursive lambda [...] but received #value. Can u
help to resolve this? [M21]

Your lambda requires three parameters [...] so your reference
to itself should have 3 parameters as well. [M9, responding to
above]

We observed much experimentation and hypothesising.
Commenters conducted systematic examinations of certain
aspects of LAMBDA usage, such as performance limitations,
and interactions with other spreadsheet features, and reported
their findings to the community.

I don’t know if the rest of you love lambdas as much as I do
but I have been using them extensively [...] and would like to
share one of the tricks I have learned. [...] [R19]

I’m trying out excels new LAMBDA function. I’m trying to call
it recursively as they write in the press release that you would
be able to. [...] [R48]

Often, commenters were unable to completely determine the
reasons for observed behaviours, and in response developed
‘folk theories’ [41–43] about LAMBDA, which, while possibly
incorrect, facilitated the formation of mental models that
allowed commenters to reason about the usage of LAMBDA.

[...] If it is actually an iterative function then it is likely to have
an underlying recursive function associated with it. The lack of
NUM error may be telling or it may simply result from the fact
that BYROWS always operates “inside LAMBDA”. The more
we deal with recursive LAMBDAS the better we will understand
their underpinnings. [YT1263]
[...] BYROW etc don’t seem to have the overhead that recursive
functions do. They don’t return the NUM! error. I think they’ve
been built using single vectors [...] They know when to stop in
the same way as any other formula as they always point to a
defined range or array. [...] [YT1045, responding to above]

C. End-user software engineering

In end-user programming, the focus is on completing the
task and the program is a means to an end, whereas in end-
user software engineering, the focus is on the program itself:
its correctness, maintainability, and reuse [28]. Discussions of
naming and reuse prompted by LAMBDA signal a shift from
the former to the latter.

LAMBDA definitions provoke end-user consideration of
naming conventions because, notwithstanding a trivial invoca-
tion, names are compulsory arguments to LET and LAMBDA. A
key reason for the approachability of spreadsheet programming
is the lack of a forced consideration of naming: grid references
provide automatic names for variables; to instantiate a variable
the user needs only enter a value or a formula – the act of
choosing a grid location subsumes the act of naming. While
assigning names to grid ranges is supported through the name
manager, only a small fraction of spreadsheet users know of
the feature, let alone use it [44]. Thus, this discussion could
only have been precipitated by LET and LAMBDA.

[...] Where you’ve chosen to name your function something
related to the report, I think it should be related to the action.
[...] with this one and work out the best practice [...] [YT1045]
I don’t think it is Microsoft’s duty to help us name things
smartly. That is our duty. It is funny. The vast majority of
computer users on the planet earth do not even have the day
1, basic computer skill of naming things smartly. [...] [YT1218]

Similarly, until the introduction of LAMBDA, users had
to learn a different programming language (e.g., VBA,
JavaScript) to define functions, and organizational IT teams of-
ten restrict their use over security concerns (Section IV-E). The
capabilities of LAMBDA leads to speculations about changes
to “practice and mindset” required to build spreadsheets.

The future is to write robust formulas for complex and reusable
tasks [...] or build even more complex ones like subroutines [...]
a structural revolution [...] [YT370]
After experimenting for a while with LET and now LAMBDA
[...] the change of practice and mindset required to create good
[...] solutions is so great that one’s past experience [...] may
itself be the greatest impediment [...] [M5]

D. Identity formation

The computational nature of LAMBDA raised discussions
regarding the identity of spreadsheet users as programmers,
spreadsheets as code, and the expertise required to har-
ness LAMBDA. One perspective distinguished spreadsheet au-
thoring and programming, similarly viewing LAMBDA as a
separate to coding.

That’s true if you know VB. Most Excel users don’t and this is
a simple method to build complex functions without having to
code. [YT421]

Many people that use Excel are office workers and don’t have
enough background in programming or the time to learn it. You
can pick up the LAMBDA function in a few minutes though
if you are already familiar with many other Excel functions.
[YT421]

Prior work suggests that this perspective can be motivated by
wanting to distance oneself from a “programmer” [45]. This
tension of identity was also reflected in the discussion.

Whilst [...] Lambda functions are simple extensions of the
traditional spreadsheet methods [...] the process of solution
development shifts from the ad-hoc to being a programming
exercise [...] traditional methods allow users to interact with
their numbers whilst remaining in denial that they are actually
programming [M5]

The expertise required to use LAMBDA was another common
theme. Central to the discussion was the notion of expertise
across an organization, particularly the practice of those with
expertise building and sharing solutions with those who
do not. Some viewed LAMBDA as another advanced feature
reserved for those with expertise.

Most organizations [...] only have a couple people who can
actually make and edit the advanced sheets [...] and lots of
people who use those sheets with a very, very rudimentary
knowledge of Excel to generally get their jobs done. I don’t
really see the addition of new advanced functionality changing
that [...] [HN38]

Several users expressed reluctance or concerns because collab-
orators might not be familiar with LAMBDA functions; thus,
LAMBDA functions might hinder comprehension.

[...] though how might non-technical folks feel about a coworker
sending them a spreadsheet with function-values? [HN4]

In contrast, others indicated that LAMBDA can improve sharing
by providing a way to implement advanced functionality
without resorting to traditional programming such as VBA,
reaffirming that some users perceive a distinction between
spreadsheets and code.

There’s always been this midpoint of complexity when making
spreadsheets that coworkers will use. Including macros scares
them away but using long, un-named formulas does not even
though it is much less clear what it’s doing [...] a macro was not
needed, only a label and some arguments to lower the cognitive
load. [HN95]

Consistent with prior observations, we observed derision
and gatekeeping behaviour regarding the identity and expertise
of spreadsheet users as programmers [45].

What has instead happened, I shit you not, is we have “Excel
influencers” teaching people recursion “without code!” (aka
without VBScript). I cried and I laughed when I first saw, it
was a watershed moment in CS education. [HN48]

[...] no mention of debugging. In the hands of Excel cowboys,
this can become another foot gun. [HN124]

[...] The irony is that this feature will almost certainly be met
with derision & scorn from the CS crowd and clueless shrugs
from excel users. [HN182]

However, we also observed the championing and support
for the perspective that spreadsheet users are part of a pro-
gramming community.

Of course this also means that Excel becomes even more of a
slippery slope towards programming generally, which can only
be a good thing. [HN161]

[...] this could actually be a really natural bridge into program-
ming for a lot of people whose advanced Excel skills already
have them on the cusp. [HN119]

Debate about the identity of spreadsheet users as program-
mers is by no means new [45], but the introduction of a first-
class computational abstraction is a fresh opportunity for users
and researchers alike to revisit this discussion.

E. Alternatives

Discussions of potential alternatives to LAMBDA, including
other ways of achieving the same thing as LAMBDA, or
simply citations of other technologies, helped users situate
LAMBDA among a wider suite of tools. The most common
comparison was to VBA. Users discussed other programming
languages, software packages, and alternative ways of using
existing spreadsheet features.

After expertise, which we have covered, the salient axes of
comparison were security and performance. When contrasted
with VBA macros, LAMBDA was seen to have security and
performance benefits, due to the perceived superiority of the
formula calculation engine over the VBA environment.

Alternatively, Excel lambda-based udfs will be faster than VBA
UDFs because the Excel Calc engine is multi-threaded, whereas
VBA is single-threaded. [R21]

Lambdas also have the advantage of working in situations
where macros are not allowed or on platforms where VBA is
not available [...] though the latter also allows you to perform
many workbook management tasks. [YT909]

The problem with “macros” is that they can be arbitrary VBA
code that can invoke OS functions and foreign applications.
Lambdas can only invoke Excel functions that you can invoke
anyway [...] Lambdas merely add an abstraction mechanism,
they otherwise don’t provide access to new functionality. [HN88]

F. Differences in communities

We observed differences between the four communities
studied, reflective of the differing demographics of users of
these websites and their differing concerns. Together, they
showcase a diverse range of stakeholder perspectives.

For example, Hacker News, a community aimed towards
technology industry professionals, involved comparative and
analytical comments that considered the reception and con-
sequences of LAMBDA on the spreadsheet community. Com-
ments from Hacker News were the longest on average (me-
dian=47 words), in part because they explored technical con-
cepts. Many drew comparisons with programming concepts,
research that inspired LAMBDA, potential improvements based

Fig. 1. Relative frequencies of qualitative codes, compared between different
online communities.

on other programming paradigms, or whether using spread-
sheets constituted programming.

On the other hand, Microsoft Tech Community is the official
discussion and help forum for Microsoft products, including
Excel. Users fell largely into two groups: a small number of
experts who contributed to several threads, and a large number

of users who came to seek help, started a single thread, and
posted only a few comments on it. Comments were somewhat
long (median=44 words) and often included formulas and
attached spreadsheets. This can be seen in the high occurrence
of use intent and experimentation, both of which relate to
users writing examples of LAMBDA (Fig. 1).

Reddit discussions were more concerned with sharing craft
practices. Most threads came from the r/excel forum,
which is focused on sharing techniques and news, and ori-
ented towards practitioners and enthusiasts. Reddit comments
discussed naming and commenting, how to use LAMBDA to
improve maintainability and comprehension, and pitfalls to
avoid. Reddit users appeared to have a wide range of expertise.
Some had formal knowledge of programming, although a
smaller proportion than Hacker News.

YouTube comments were often in response to tutorial
videos, which users presumably watched to learn about
LAMBDA. Our YouTube data contained more unique users
and comments than the other three sources combined, but its
comments were also the shortest (median=13 words), and often
not informative. YouTube comments often reflected users’
unjustified sentiment towards LAMBDA (Fig. 1).

To illustrate the differences, we present the relative fre-
quency of codes across different communities in Figure 1. We
recognise inherent limitations in attempting to quantify quali-
tative codes, and present this purely as an narrative aid. We are
not making quantitative claims about the representativeness of
these code frequencies.

V. DISCUSSION

A. Are spreadsheet users programmers?

The question of whether spreadsheet users are programmers
is not inconsequential terminological hair-splitting; it has
implications for the role spreadsheets play in society.

Programmer is a marked identity [46] with cultural as-
sociations against which end-users judge themselves. The
conceptualisation of spreadsheet use as a programming activity
therefore directly suggests to users whether spreadsheets are
for people ‘like them’ or for ‘others’. People’s skills are shaped
and captured by software, resulting in an intimate binding of
one’s professional value to the software one uses [47].

It has been previously observed that spreadsheet users do not
view themselves as programmers [45]. Our findings provide
additional nuance: some spreadsheet users view themselves
as programmers, but others do not. Some are unaware that a
distinction can be made, or if a distinction is to be made,
what the appropriate grounds are. Users who concede that
spreadsheet formula authoring can be viewed as programming
may nonetheless not self-identify as programmers.

boyd and Ellison describe the community process of impres-
sion management [48], where the expression of self through
social media becomes a mechanism for forming and signalling
identity. Though highly individualised, the identity of “pro-
grammer” is at the same time a community identity, subject
to community negotiation. In this respect it is similar to soci-
ological theories of group formation [49]. Kinship, friendship,

and neighbourly groups serve as means of allocating resources,
but also as a psychological device for uniting the sense of self
with a sense of belonging. Thus, the use and discussion of
LAMBDA can serve both as a peer-signalling mechanism as
well as to enact one’s own identity as a programmer.

LAMBDA creates new bridges (and gulfs) between pro-
grammers and ‘others’. Many commenters implied that using
LAMBDA is closer to traditional notions of programming
than authoring spreadsheet formulas, but it is unclear what
underpins this perception. Does managing complexity via
LAMBDA resemble software engineering practices, associated
with programming and dissociated from spreadsheets? As
Wing notes, decomposition and abstraction are key to com-
putational thinking [50].

Some commenters predicted that LAMBDA is going to
change the way spreadsheets are built. However, absent better
tooling and higher levels of user expertise, it is doubtful
whether a LAMBDA-centric spreadsheet development approach
induces better design, testing, or documentation. While some
users anticipated a “structural revolution”, such optimism
ought to be tempered by the fact that formula writers constitute
a minority of spreadsheet users, and corpus studies show that
as few as 7% of spreadsheets contain a single formula [51, 52].

B. Abstraction and comprehension

Ragavan et al.’s study of spreadsheet comprehension found
two main bottlenecks to formula comprehension: first, the
information-seeking detours required to understand the quan-
tities on which a formula operates; and second, understanding
the usage of unfamiliar formula functions [39].

While some commenters felt that LAMBDA improved for-
mula comprehension, particularly regarding ‘megaformulas’,
others felt that these problems would be worsened. Ragavan
et al.’s findings allow us to identify the source of this contra-
diction: first, the naming of subexpressions can either eliminate
or necessitate information-seeking detours; and second, with
LAMBDA, there is both the potential for more intelligible,
domain-specific functions as well as for arbitrary, poorly-
documented constructions. The resolution of this tension can-
not be (purely) in the technical design of the formula language,
and thus we observed users develop craft practices in response.

C. Implications for spreadsheets and other tools

LAMBDA promotes attention investment in complex for-
mulas, and thus raises issues of tooling. Discussions made
clear the value of ideas from professional development en-
vironments, such as syntax highlighting, code definitions,
autocomplete, versioning and library management, and so on.
We are not the first to observe such needs or propose their
implementation. However the wholesale implementation of
professional features for end-user programmers is seldom an
effective strategy; the design of Calculation View [44] shows
how a code-like representation might be sympathetically in-
troduced as a companion to the spreadsheet grid.

Opportunities also arise for misuse. Common anti-patterns
in programming (e.g., abuse of recursion, deeply nested

conditions, deep chains of invocations) may surface through
LAMBDA. Opportunities emerge for educating spreadsheet
users about such misuses, and for addressing them (e.g., via
refactoring tools [53]). By analogy to prior research, there are
research opportunities in unit testing and documentation [28].

D. Limitations

Analyses of online communities are subject to self-selection
bias; participation in our dataset is skewed towards end-
user programmers with an intrinsic interest in LAMBDA and
in developing their technical skills. This group may not be
representative. On the other hand, attitudes and practices of
spreadsheet use often percolate through the end-user commu-
nity via influential, opinionated, and expert individuals who
advocate for features and techniques [54, 55]. As such, it
seems advantageous to study a group whose views are likely
to influence others.

During coding, we felt limited by our unitisation of the
data into individual comments. Sometimes codes were more
properties of (sub-)threads than of individual comments. There
were digressive and discursive comments which, despite aris-
ing in the context of one set of codes, were not directly
relevant to them. We developed heuristics for consistency (e.g.,
to qualify for a code, a reply must add new information and
not merely repeat or agree with a previous comment) but still
felt the need for a more flexible scheme than applying codes
to individual comments. While in this study we followed the
single-comment model of previous work [33], this strikes us
as an area with potential for methodological innovation.

Our data captures an early stage of the LAMBDA release,
with access limited for most of this period to a public beta
testing program (albeit a very large one, with millions of
members). We could have waited until LAMBDA had been
in general release for some time. However, observations of
user experiences at all stages of a product lifecycle are useful;
documenting early barriers and misconceptions will enable
comparisons with user attitudes in the future.

VI. CONCLUSION AND FUTURE WORK

We studied reactions to lambda abstractions in spreadsheets
through a thematic analysis of nearly 2,700 comments posted
on four online forums. Commenters noted that abstraction has
both benefits and drawbacks, and that complementary practices
(e.g., variable naming, documentation) and better tooling (e.g,
editors, sharing and versioning tools, testing and debugging
utilities) are necessary to use LAMBDA effectively. They also
anticipated challenges around comprehension by less-expert
users. LAMBDA prompted mindset changes towards investing
in authoring more reusable abstractions.

The Excel LAMBDA function reopens debate around the
identity of spreadsheet users as programmers. It raises ques-
tions of whether users ought to learn a ‘traditional’ program-
ming language to access concepts such as abstraction and
recursion, and whether lambda abstractions are a smooth segue
for spreadsheet users to begin learning a language such as
Python. Each of these opens a rich avenue for future work.

APPENDIX
CODES AND THEIR DESCRIPTIONS

• irrelevant: not related to lambdas, or related to lambdas
but not informative, or not in English

A. The tensions of abstraction

• comprehension: All discussions about ability to under-
stand/read/comprehend formulas/lambdas (or the lack),
granular at the level of a single formula

• debugging, testing, auditing: (abstract) The ability to
debug, test, audit formulas/lambdas, their ux, challenges

• maintainability: discussions about formula and spread-
sheet maintainability made better or worse (includes
simplification, modularity, error-proneness), only if this
doesn’t fall under debugging testing and auditing. Dis-
cussions about code-quality (code being formula), impor-
tance, or lack thereof

• craft practices: naming: discussion about naming of
parameters, the challenges, importance, etc

• craft practices: comments: discussion about the ability
to add comment in formulas

• craft practices: others: other craft practices; suggest
some usage idiom or technique

• availability: discussion about access to LAMBDA, chan-
nels, Excel versions, various end points (e.g., desktop,
web, and mobile)

• sharing: sharing formulas and lambdas, the challenges;
a reuse scenario where colleagues/other people are ex-
plicitly mentioned, or sharing files with lambdas / col-
laboration (does not include sharing files in a forum for
debugging support)

• reuse: reusing formulas and lambdas, across workbooks,
from coworkers; mentions scenarios where lambda is
used multiple times

B. Implications for tools and practices

• user experience: consideration of aspects of the experi-
ence of overall current lambda usage, but not mentioning
tooling keywords (e.g., current syntax, current way of
writing)

• tooling: explicit mention of: editor, version control, IDE,
debugger, package manager, repository. A subset of user
experience.

• standard formula library: references to functionality
that should be built in to spreadsheet formula language /
functions, e.g. regex

• performance: discuss speed, memory requirements, etc.
for lambdas (or alternatives, in comparison)

• security: discuss security issues for lambdas (or alterna-
tives, in comparison)

C. Barriers and strategies

• understanding barriers: the process of understanding
lambdas, the desire to, the challenge, common misun-
derstandings. Also, misreadings - perhaps assumptions
based on marketing material about what lambdas are like.

Includes asking questions about lambda understanding.
This also includes ‘understanding’ and ‘use’ barriers as
per Ko et al.’s framework.

• coordination barrier: any confusion or remark about
interaction between *lambdas* and some other Excel
feature

• sentiment: Positive / negative sentiment about lambdas
with no justifications (e.g., lambdas are nice).

• use intent or scenario: shares concrete current or antic-
ipated use cases for lambdas (or a use case inspired by
discussion of lambdas, even if lambdas are not the best
tool to solve the problem)

• sensemaking: help: use of help resources, their useful-
ness, or their unhelpfulness. Asking others on the internet
for help on things that should be in documentation

• sensemaking: experimentation: ‘I tried/will try X’,
probing the behaviour and possibilities of lambda

• folk theory: guessing about lambda behaviour, or why
lambdas interact with other features in a certain way
(without actually trying something out, or trying but not
getting direct evidence for the guess). Specifically refers
to an unverified guess or hypothesis about how lambdas
work. Look out for sentences such as: ‘I think what
is happening is X’, or ‘I guess X happens becuse Y’.
An episode of understanding (non-barrier) (e.g., ‘I don’t
understand why Y happens’) may culminate in folk (e.g.,
‘I guess it is because of X’) if it isn’t or can’t be properly
answered in the thread.

• fix my error: comments that are requesting or attempting
to fix a bug in a lambda

D. Identity formation

• spreadsheets as code: discussion about the differ-
ences/similarities of spreadsheets and programming,
whether users are programmers, “real programming”

• spreadsheet expertise: consideration of skill/knowledge
required to use lambdas or alternatives

• programming theory: explicit mention of formal aca-
demic concepts from computer science or programming
theory such as types, currying, recursion

• programming culture: references to programming cul-
ture, or concepts adjacent to programming, such as
project-euler, XKCD, scheme, lisp interpreter, or tracing
lineage of functional programming ideas (overlaps with
alternatives, if they mention concrete implementations)

• alternatives: discussions of potential alternatives to
LAMBDA (including other ways of doing the same thing
as LAMBDA), or comparison/citation of other technolo-
gies (thus helping situate Lambda among wider suite of
tools)

ACKNOWLEDGMENTS

We thank the reviewers for their careful feedback.

REFERENCES

[1] B. Jones, “Announcing LAMBDA: Turn Excel formulas
into custom functions,” Dec 2020. [Online]. Available:
https://techcommunity.microsoft.com/t5/excel-blog/
announcing-lambda-turn-excel-formulas-into-custom-functions/
ba-p/1925546

[2] A. Gordon and S. Peyton Jones, “LAMBDA: The
ultimate Excel worksheet function,” Jan. 2021. [Online].
Available: https://www.microsoft.com/en-us/research/
blog/lambda-the-ultimatae-excel-worksheet-function/

[3] R. Munroe, “Excel Lambda,” 2021. [Online]. Available:
https://m.xkcd.com/2453/

[4] R. Rojas and U. Hashagen, “Konrad Zuse’s Z4: ar-
chitecture, programming, and modifications at the ETH
Zurich,” 2002.

[5] B. E. Carpenter and R. W. Doran, “The other
Turing machine,” The Computer Journal, vol. 20,
no. 3, pp. 269–279, 01 1977. [Online]. Available:
https://doi.org/10.1093/comjnl/20.3.269

[6] M. Burnett, J. Atwood, R. W. Djang, J. Reichwein,
H. Gottfried, and S. Yang, “Forms/3: A first-order visual
language to explore the boundaries of the spreadsheet
paradigm,” Journal of functional programming, vol. 11,
no. 2, pp. 155–206, 2001.

[7] S. Peyton Jones, A. Blackwell, and M. Burnett, “A user-
centred approach to functions in Excel,” in Proceedings
of the eighth ACM SIGPLAN international conference on
Functional programming, 2003, pp. 165–176.

[8] M. Mccutchen, J. Borghouts, A. D. Gordon, S. Peyton
Jones, and A. Sarkar, “Elastic sheet-defined functions:
Generalising spreadsheet functions to variable-size input
arrays,” Journal of Functional Programming, vol. 30,
2020.

[9] G. Chalhoub and A. Sarkar, ““It’s Freedom to Put
Things Where My Mind Wants”: Understanding and
Improving the User Experience of Structuring Data in
Spreadsheets,” in Proceedings of the 2022 CHI Confer-
ence on Human Factors in Computing Systems, ser. CHI
’22. New York, NY, USA: Association for Computing
Machinery, 2022.

[10] N. Joharizadeh, A. Sarkar, A. D. Gordon, and
J. Williams, “Gridlets: Reusing spreadsheet grids,” in
Extended Abstracts of the 2020 CHI Conference on
Human Factors in Computing Systems, 2020, pp. 1–7.

[11] A. F. Blackwell, L. Church, and T. R. Green, “The
abstract is an enemy: Alternative perspectives to com-
putational thinking.” in PPIG, 2008, p. 5.

[12] A. Church, “A set of postulates for the foundation of
logic,” Annals of Mathematics, vol. 33, no. 2, pp. 346–
366, 1932.

[13] ——, The calculi of lambda-conversion. Princeton
University Press, 1941.

[14] P. J. Landin, “Correspondence between ALGOL 60 and
Church’s lambda-notation: parts I and II,” Communica-
tions of the ACM, vol. 8, no. 1–2, 1965.

[15] G. L. Steel Jr. and G. J. Sussman, “LAMBDA:
The ultimate imperative,” MIT AI Laboratory, AI
Memo 353, Mar. 1976. [Online]. Available: https:
//dspace.mit.edu/handle/1721.1/5790

[16] T. R. G. Green and M. Petre, “Usability analysis of visual
programming environments: a ‘cognitive dimensions’
framework,” Journal of Visual Languages & Computing,
vol. 7, no. 2, pp. 131–174, 1996.

[17] A. F. Blackwell, “Psychological issues in end-user pro-
gramming,” in End user development. Springer, 2006,
pp. 9–30.

[18] B. Shneiderman, “Direct manipulation for comprehen-
sible, predictable and controllable user interfaces,” in
Proceedings of the 2nd international conference on In-
telligent user interfaces, 1997, pp. 33–39.

[19] A. F. Blackwell, “See what you need: Helping end-users
to build abstractions,” Journal of Visual Languages &
Computing, vol. 12, no. 5, pp. 475–499, 2001.

[20] D. Kurlander, A. Cypher, and D. C. Halbert, Watch what
I do: programming by demonstration. MIT press, 1993.

[21] S. Gulwani, “Automating string processing in spread-
sheets using input-output examples,” ACM Sigplan No-
tices, vol. 46, no. 1, pp. 317–330, 2011.

[22] P. Sestoft and J. Z. Sørensen, “Sheet-defined functions:
implementation and initial evaluation,” in International
Symposium on End User Development. Springer, 2013,
pp. 88–103.

[23] J. Williams, N. Joharizadeh, A. D. Gordon, and
A. Sarkar, “Higher-order spreadsheets with spilled ar-
rays.” in ESOP, 2020, pp. 743–769.

[24] M. Burnett, “What is end-user software engineering and
why does it matter?” in International symposium on end
user development. Springer, 2009, pp. 15–28.

[25] M. F. Costabile, D. Fogli, P. Mussio, and A. Piccinno,
“End-user development: The software shaping workshop
approach,” in End user development. Springer, 2006,
pp. 183–205.

[26] T. A. Grossman, “Spreadsheet engineering: A research
framework,” arXiv preprint arXiv:0711.0538, 2007.

[27] J. Cunha, M. Erwig, and J. Saraiva, “Automatically
inferring ClassSheet models from spreadsheets,” in 2010
IEEE Symposium on Visual Languages and Human-
Centric Computing. IEEE, 2010, pp. 93–100.

[28] A. J. Ko, R. Abraham, L. Beckwith, A. Black-
well, M. Burnett, M. Erwig, C. Scaffidi, J. Lawrance,
H. Lieberman, B. Myers et al., “The state of the art in
end-user software engineering,” ACM Computing Surveys
(CSUR), vol. 43, no. 3, pp. 1–44, 2011.

[29] R. R. Panko and D. N. Port, “End user computing: The
dark matter (and dark energy) of corporate IT,” Journal
of Organizational and End User Computing (JOEUC),
vol. 25, no. 3, pp. 1–19, 2013.

[30] B. A. Nardi and J. R. Miller, “Twinkling lights and

nested loops: distributed problem solving and spreadsheet
development,” International Journal of Man-Machine
Studies, vol. 34, no. 2, pp. 161–184, 1991.

[31] Y. Wu, J. Kropczynski, P. C. Shih, and J. M. Carroll,
“Exploring the ecosystem of software developers on
github and other platforms,” in Proceedings of the
Companion Publication of the 17th ACM Conference
on Computer Supported Cooperative Work & Social
Computing, ser. CSCW Companion ’14. New York,
NY, USA: Association for Computing Machinery, 2014,
p. 265–268. [Online]. Available: https://doi.org/10.1145/
2556420.2556483

[32] T. Barik, B. Johnson, and E. Murphy-Hill, “I heart
hacker news: expanding qualitative research findings by
analyzing social news websites,” in Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 882–885.

[33] T. Barik, “Expressions on the nature and significance
of programming and play,” in 2017 IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 2017, pp. 145–153.

[34] V. Braun and V. Clarke, “Using thematic analysis in
psychology,” Qualitative research in psychology, vol. 3,
no. 2, pp. 77–101, 2006.

[35] J. L. Campbell, C. Quincy, J. Osserman, and O. K.
Pedersen, “Coding in-depth semistructured interviews:
Problems of unitization and intercoder reliability and
agreement,” Sociological methods & research, vol. 42,
no. 3, pp. 294–320, 2013.

[36] N. McDonald, S. Schoenebeck, and A. Forte, “Reliability
and inter-rater reliability in qualitative research: Norms
and guidelines for CSCW and HCI practice,” Proceed-
ings of the ACM on Human-Computer Interaction, vol. 3,
no. CSCW, pp. 1–23, 2019.

[37] J. Saldaña, The coding manual for qualitative re-
searchers. sage, 2021.

[38] A. Blackwell, “A craft practice of programming language
research,” in Proceedings of the Psychology of Program-
ming Interest Group (PPIG) Conference, 2018.

[39] S. Srinivasa Ragavan, A. Sarkar, and A. D. Gordon,
“Spreadsheet comprehension: Guesswork, giving up and
going back to the author,” in Proceedings of the
2021 CHI Conference on Human Factors in Computing
Systems, ser. CHI ’21. New York, NY, USA: Association
for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3411764.3445634

[40] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning
barriers in end-user programming systems,” in 2004
IEEE Symposium on Visual Languages-Human Centric
Computing. IEEE, 2004, pp. 199–206.

[41] P. N. Johnson-Laird and K. Oatley, “Basic emotions,
rationality, and folk theory,” Cognition & Emotion, vol. 6,
no. 3-4, pp. 201–223, 1992.

[42] M. Eslami, K. Karahalios, C. Sandvig, K. Vaccaro,
A. Rickman, K. Hamilton, and A. Kirlik, “First I “like”
it, then I hide it: Folk Theories of Social Feeds,” in

Proceedings of the 2016 CHI conference on human
factors in computing systems, 2016, pp. 2371–2382.

[43] M. A. DeVito, J. Birnholtz, J. T. Hancock, M. French,
and S. Liu, “How people form folk theories of social
media feeds and what it means for how we study self-
presentation,” in Proceedings of the 2018 CHI conference
on human factors in computing systems, 2018, pp. 1–12.

[44] A. Sarkar, A. D. Gordon, S. Peyton Jones, and
N. Toronto, “Calculation view: multiple-representation
editing in spreadsheets,” in 2018 IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC), 2018, pp. 85–93.

[45] F. Hermans, B. Jansen, S. Roy, E. Aivaloglou, A. Swidan,
and D. Hoepelman, “Spreadsheets are code: An overview
of software engineering approaches applied to spread-
sheets,” in 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering
(SANER), vol. 5. IEEE, 2016, pp. 56–65.

[46] W. Brekhus, “A sociology of the unmarked: Redirecting
our focus,” Sociological Theory, vol. 16, no. 1, pp. 34–
51, 1998.

[47] M. Nouwens and C. N. Klokmose, “The application and
its consequences for non-standard knowledge work,” in
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, 2018, pp. 1–12.

[48] d. m. boyd and N. B. Ellison, “Social network sites: Def-
inition, history, and scholarship,” Journal of computer-
mediated Communication, vol. 13, no. 1, pp. 210–230,
2007.

[49] E. Litwak and I. Szelenyi, “Primary group structures and
their functions: Kin, neighbors, and friends,” American
Sociological Review, pp. 465–481, 1969.

[50] J. M. Wing, “Computational thinking,” Communications
of the ACM, vol. 49, no. 3, pp. 33–35, 2006.

[51] F. Hermans and E. Murphy-Hill, “Enron’s spreadsheets
and related emails: A dataset and analysis,” in 2015
IEEE/ACM 37th IEEE International Conference on Soft-
ware Engineering, vol. 2. IEEE, 2015, pp. 7–16.

[52] T. Barik, K. Lubick, J. Smith, J. Slankas, and E. Murphy-
Hill, “FUSE: a reproducible, extendable, internet-scale
corpus of spreadsheets,” in 2015 IEEE/ACM 12th Work-
ing Conference on Mining Software Repositories. IEEE,
2015, pp. 486–489.

[53] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting
and refactoring code smells in spreadsheet formulas,”
Empirical Software Engineering, vol. 20, no. 2, pp. 549–
575, 2015.

[54] A. Sarkar and A. D. Gordon, “How do people learn to
use spreadsheets? (work in progress),” in Proceedings
of the 29th Annual Conference of the Psychology of
Programming Interest Group (PPIG 2018), 2018, pp. 28–
35.

[55] J. C. Brancheau and J. C. Wetherbe, “The adoption of
spreadsheet software: testing innovation diffusion theory
in the context of end-user computing,” Information sys-
tems research, vol. 1, no. 2, pp. 115–143, 1990.

