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Abstract
The research field of end-user programming has largely been
concernedwith helping non-experts learn to code sufficiently
well in order to achieve their tasks. Generative AI stands
to obviate this entirely by allowing users to generate code
from naturalistic language prompts. In this essay, we explore
the extent to which “traditional” programming languages
remain relevant for non-expert end-user programmers in
a world with generative AI. We posit the “generative shift
hypothesis”: that generative AI will create qualitative and
quantitative expansions in the traditional scope of end-user
programming. We outline some reasons that traditional pro-
gramming languages may still be relevant and useful for
end-user programmers. We speculate whether each of these
reasonsmight be fundamental and enduring, or whether they
may disappear with further improvements and innovations
in generative AI. Finally, we articulate a set of implications
for end-user programming research, including the possibility
of needing to revisit many well-established core concepts,
such as Ko’s learning barriers and Blackwell’s attention in-
vestment model.

CCS Concepts: • Human-centered computing → HCI
theory, concepts and models; Natural language inter-
faces; • Computing methodologies → Natural language
processing; Neural networks; • Social and professional
topics → User characteristics.

Keywords: generative shift hypothesis, prompt engineer-
ing, end-user software customization, attention investment
model, learning barriers, self-efficacy, live programming
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1 The Status Quo for End-user
Programming Research

End-user programming (EUP) is the activity of writing a
program for one’s own use; one is both the programmer and
the end-user of the program [53]. This can be contrasted
with software development, in which the programmers are
typically not going to be people using the system. There is
a huge variety of end-user programmers (EUPs) and end-
user programming activities, such as writing spreadsheet
formulas to analyse data, or a script to automate a daily
workflow, or even programming as a hobby for personal
creative satisfaction [1].
Unlike professional software developers, EUPs typically

have very little or no formal training in programming or
computing. This gap in expertise is the primary challenge
faced by EUPs trying to achieve their task (though there are
other differences between EUPs and professionals, such as
their motivations for programming, strategies for learning,
debugging, etc. which add further complexities).
End-user programming research thus aims to bridge this

gap. So far, its aim can be described as improving the ability
of EUPs to use formal systems. The term “formal systems”
is a shorthand to mean a predictable and deterministic in-
terface which may include a programming language (e.g.,
spreadsheet formulas, or block programming in Scratch [86])
and other interface elements (e.g., the spreadsheet grid).
EUP research helps users with formal systems in three

ways. The first approach is to help users learn how to use
formal systems. This concern is shared by computer science
education research (CSER) [28], and includes research on
novice programming, the design of programming tutorial
aids, multiple representations systems [105], etc.

The second approach is to reduce or scaffold the expertise
required to use formal systems. This is the motivation behind

https://doi.org/10.1145/3622758.3622882
https://doi.org/10.1145/3622758.3622882
© Owner/Author 2023. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in Onward 2023, https://doi.org/10.1145/3622758.3622882.



Onward! ’23, October 25–27, 2023, Cascais, Portugal Advait Sarkar

many visual programming languages, such as Scratch [86],
which uses blocks and slots of various shapes to anticipate
and prevent syntactic and type errors, since a block of a
certain shape can only fit into a corresponding slot.
The third approach aims to reduce the reliance on cod-

ing, such as programming by example (PBE) [62] and pro-
gramming by demonstration (PBD) [20]. Thus, by showing
examples of input and output, or manually demonstrating
a particular process, users can define intended behaviour
(code generation is often facilitated by a method such as pro-
gram synthesis [70]). While the aim is to reduce the reliance
on coding, in practice many PBE/PBD systems do not en-
tirely avoid interaction with the generated code. For instance,
Flash Fill [32], a commercially implemented PBE system for
string manipulation formulas in spreadsheets, was initially
deployed without showing the generated programs to the
user, but was later extended to show the user its generated
formulas (in some cases) for explanation, verification, and
debugging.

In summary of the status quo: EUP research aims to help
users avail of formal programming systems by improving
their ability to learn, to reduce the expertise requirements of
formal systems, or by offering alternatives to writing code.

2 The Scope of the Term “Generative AI”
for End-User Programming

The term “generative AI” is extremely broad, encompassing
many types of system with different capabilities, sometimes
referring to a core algorithm (such as the transformer [113]),
a particular instantiated model (such as GPT-4 [79]; these are
also sometimes referred to as “foundation models” [12]), or
a productised system which may be comprised of an ensem-
ble of multiple models together with prompt engineering,
safety heuristics, and user interface affordances (such as
ChatGPT1). In this respect “generative AI” has taken on a
similarly pluralistic nature as terms such as “machine learn-
ing” and “artificial intelligence” which can span an immense
range of tools and techniques [67].
The additional descriptor “generative” is a reference to

the fact that these models can generate information artefacts
(such as images or text), by modelling a high-dimensional
space from its input data from which new points can be
sampled. This is as opposed to discriminative models, which
can classify, label, score, or transform their input based on
training examples, but do not explicitly model the input
space [58]. It must be noted that while the term “generative
AI” has only come into widespread usage in 2023 and is used
to refer to contemporary generative models, research into
generative models long predates this [26, 87], and “latent
variable models” were proposed as early as the turn of the
20th century [15].

1https://openai.com/blog/chatgpt (last accessed 23 June 2023)

To focus the scope of the discussion in this paper, it is
worth defining “generative AI” in terms of the aspects which
are of greatest interest to EUPs, as well as the aspects which
differentiate “generative AI” from previous generations of
AI tools which have also been applied in the EUP context.

First, we are talking about tools which are directly used by
EUPs. An EUP does not interact with an algorithm, or a spe-
cific model, but a tool which may consist of multiple models
that are part of a broader system of heuristics, prompt engi-
neering, and user interface elements. From the perspective
of the end-user experience, there are many aspects of these
heuristics and interface elements which impact their ability
to use the underlying model.2
Second, we are talking about tools which are used in a

programming context. There are many ways to define pro-
gramming, but a particularly useful and influential definition
in end-user programming research is that programming is
any activity exhibiting “the property that the user is not
directly manipulating observable things, but specifying be-
haviour to occur at some future time” [11]. Generative AI
tools can be applied in a wide variety of contexts, and many
of them relate to the direct production of artefacts (text, im-
ages, etc.) which are not interpreted as specifying behaviour
to occur in the future – we exclude these from consideration.
Finally, we are talking about tools built on contemporary

machine learning techniques as of this writing in 2023. De-
spite the fact that generative models have a long history,
generative AI models, such as large language models [13]
and image generation models [85] have recently seen a sig-
nificant step-change in capabilities. The reason for this is a
combination of advances in hardware (such as GPU clusters
for training), algorithms (such as the transformer architec-
ture), and the availability of Internet-scale datasets [94]. This
has enabled models to achieve human-level performance for
the first time in a wide variety of benchmarks including
code generation, speech recognition, image generation, even
passing the bar exam [46]. This is the latest development
in a period typically dated to begin in 2016 that has been
described as the “third summer” of AI,3 following a common
periodisation of AI research as measured by “rapid scientific
advances, broad commercialisation, and exuberance” [47]. A
relatively stable term of art accepted and advocated within
the AI research community that encapsulates the advances
of the third summer is “deep learning” [60], which is broad
enough to encompass a variety of approaches developed in
2There are also elements that impact usability but have little or no connec-
tion with the underlying model, such as the text in dialogue boxes and the
placement of menu buttons, which are not of concern here.
32016 is the year that Deepmind’s AlphaGo program [100] beat grandmaster
Lee Sedol, though some scholars point as early as 2012, referring to the
so-called “ImageNet moment” referring to the solution of the ImageNet
challenge by deep convolutional networks [56], while others look as recently
as 2018, referring to the BERTmodel which similarly swept natural language
processing benchmarks and is referred to as “NLP’s ImageNet moment” [24].
A detailed historiography of the periodisation of AI research is out of scope.

https://openai.com/blog/chatgpt
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recent years while being specific enough to exclude older
generative approaches.
Putting these considerations together, the following defi-

nition is adopted for the remainder of the paper:
By generative AI, we mean an end-user tool, ap-
plied to programming, whose technical implemen-
tation includes a generative model based on deep
learning.

Thus, some concrete examples which fit the definition and
scope of generative AI in this paper are: GitHub Copilot4,
an end-user tool which offers code completion assistance
based on the OpenAI Codex large language model; end-user
tools for naturalistic language-based programming in spread-
sheets such as those built by Liu et al. [64] (also using Codex);
and ChatGPT when it is being used to generate code, debug
code, or explore APIs and documentation.
Some concrete examples which do not fit the definition

and scope of generative AI in this paper are: CodeT5 [116],
a code generating large language model (uses deep learn-
ing, is programming-oriented, but is not an end-user tool);
early programming-by-demonstration systems such as Allen
Cypher’s Eager [19] (is programming oriented, is an end-
user tool, but does not use deep learning); and ChatGPT
when it is being used to generate a short fiction story (uses
deep learning, is an end-user tool, but is not supporting a
programming activity).

3 Motivations for Applying Generative AI
to End-User Programming

Why are the capabilities of generative AI important or benefi-
cial for EUP, and how does it differ from existing approaches?
As we have seen, EUP research is concerned with helping
users achieve programming tasks by improving learning,
reducing expertise requirements, and reducing reliance on
coding. AI approaches prior to deep learning have been ap-
plied in various ways to each of these aims, such as generat-
ing and recommending tutorials [51, 122], detecting errors
and suggesting fixes [36], and the generation of code from
demonstrations [20].
In several EUP activities, generative AI creates improve-

ments in degree over previous approaches. That is, it im-
proves performance in terms of scope and accuracy. For
example, let us consider five categories of EUP activity in
which generative AI creates an improvement in degree: au-
thoring, debugging, reuse, comprehension, and learning.
Authoring. The principal activity of EUPs is authoring,

that is, actually writing code. Quantitative evidence for the
improvement in degree afforded by generative AI is given
by tracing the performance of various approaches in cod-
ing benchmark tests [4, 42, 112], where it is now possible to

4https://github.com/features/copilot (last accessed 25 April 2023)

solve a much wider variety of programming tasks using nat-
ural language descriptions of the problem, and success rates
for programming tasks described as being representative
of “entry-level programmer” skill now regularly approaches
80%.

Debugging.Another key activity of EUPs is in debugging:
detecting and fixing errors in existing code. Here again, quan-
titative studies and benchmarks of error detection and fixing
show a significant improvement in degree in comparison to
previous approaches [27, 44].
Reuse. Often, EUPs do not seek to directly author code

starting from a blank slate, rather, they seek to reuse code
available on the Web, code they have previously written, or
code written by colleagues or stored in institutional reposi-
tories [59, 103]. There are several key challenges in the reuse
activity, principally, locating relevant code, evaluating its
suitability for reuse, and making necessary modifications to
make the code fit their current context. Studies have found
that even with interactive support for code reuse, EUPs can
struggle to adapt code due to a lack of formal programming
expertise [59]. Generative AI tools excel at facilitating reuse
and adaptation of code, and mark a significant improvement
in degree in comparison to previous approaches [94].

Comprehension. EUPs often seek to understand code for
reasons other than debugging. For example, users receiving
an unfamiliar spreadsheet from a colleague may review for-
mulas in the spreadsheet to understand the underlying data
sources for a particular value in their spreadsheet which is
relevant to a decision they need to make [95, 104]. Studies
have shown that generative AI has significantly improved
capabilities in code explanation and summarisation for stu-
dents and non-experts (though challenges remain) [44, 68].
Learning. A wide variety of AI approaches to facilitate

learning for EUPs have been previously explored, from sug-
gesting relevant tutorials [51, 122], to proactive suggestions
for improving the likelihood of EUPs to write test cases to
improve the robustness of their programs [120], and over-
coming conceptual learning barriers [41]. However, a key
challenge remains in adapting tutorials and learning mate-
rials to an individual’s problem context (what exactly are
they trying to solve), their existing knowledge, and their
learning style [14, 91]. Studies of spreadsheet learning show
that learning from colleagues or “hallway experts” is com-
mon because it is an ideal learning situation: the colleague
understands the user’s problem context and can tailor an
explanation precisely to the learner’s needs [92]. This “holy
grail” of personalised learning is another area where gen-
erative AI has shown to provide a significant improvement
in degree, where explanations can be generated on an ad
hoc basis for arbitrary code with arbitrary amounts of de-
tail [23, 69], and it is likely that such explanations can be
tailored with much greater precision to a particular learner
in a particular instance.

https://github.com/features/copilot
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Besides improvements in degree, generative AI also cre-
ates improvements in kind, that is to say, it can broadly shift
EUP activities in novel directions, or enable kinds of assis-
tance that were not possible with previous approaches. For
example, let us consider the cases of one-off automations
and exploratory programming.
One-off automations. Recall our working definition of

programming as “specifying behaviour to occur at some
future time”. This may suggest that EUPs write programs
much as software developers do, as reusable assets which
can be used repeatedly over time on different input data.
Certainly many end-user automations are like this (consider
the formulas in organisational spreadsheets which are of-
ten highly “templatized”, reused broadly and longitudinally
across the organisation, sometimes for many years [35]).
However, a lot of EUP is not like this, where instead the
objective is to develop ad-hoc data processing or cleaning
scripts which are used exactly once for a specific transforma-
tion and then discarded. In such one-off automations a lot
of interesting end-user programming behaviour is observed,
such as accepting errors or brittleness in the program, and
transforming the data through a patchwork of manual and
automated steps [81, 91]. Generative AI technologies are
capable of transforming, cleaning, and augmenting data di-
rectly, which would eliminate the need for writing a reusable
script for one-off automations entirely [38, 115]. This would
shift the scope of EUP activities away from writing such au-
tomations, but it would also create new challenges for EUPs,
for instance in verifying that such transformations have been
done correctly, and in making the occasional transition from
a fundamentally opaque transformation performed by a gen-
erative AI model to a more repeatable and well-understood
script.
Exploratory programming. Finally, many EUP activi-

ties involve an exploratory aspect; where the programming
objective is not known a priori but discovered through trial
and error and experimentation [48]. This is not just true of
artistic applications of programming such as the generation
of digital art or live coding music [17], where the exploration
may not converge to a formally “correct” solution (rather the
exploration converges to a state of subjectively assessed com-
pletion), but is also true of situations such as exploratory data
analysis where the rough forms of acceptable solutions may
be known beforehand, but the precise procedures are still to
be determined [76]. Here, generative AI not only increases
the rapidity of such exploration but also enables forms of
assistance that were not possible with previous approaches,
such as the generation of alternative narratives to trigger
nonlinear “leaps” in the user’s thinking (though this is yet
to be investigated in an EUP setting) [90, 101].

4 The Potential Intensification of End-User
Programming: The Generative Shift
Hypothesis

Generative AI can be applied to generate code in a traditional
programming language based on natural (or naturalistic) lan-
guage prompts. A brief overview of large language models
for code generation is given in Sarkar et al. [94]. This tech-
nology has already been commercialised in a number of code
editors and extensions, such as GitHub Copilot.5

As a method for enabling people to program without writ-
ing code directly, generative AI can be viewed as an evolution
of previous methods such as PBE, PBD, and older syntax-
directed or machine-learning based code autocompletion.

In other ways, as explained in Section 3, the maturation of
generative AI may herald a revolution in capabilities, in par-
ticular for EUPs. This is what wewill refer to as the generative
shift hypothesis: a radical widening in scope and capability of
EUP due in particular to increasing use of generative models.

The generative shift hypothesis posits the following qual-
itative and quantitative shifts:

• EUP will be applied more intensively to existing tasks,
with more sophisticated and deeper automation being
applied to scenarios which are already sites of EUP
(such as spreadsheets).

• EUP will be applied inmore contexts and to more tasks
than before, which were previously not sites for the
widespread application of EUP. This includes scripting
of tasks across applications and across data sources
(this is related to the enterprise concept of “robotic
process automation”).

• EUP will be applied more frequently. The vastly re-
duced costs of generating code from naturalistic utter-
ances will shift the attention investment [10] balance,
making it more practical to attempt to automate tasks
more often.

It is not within the scope of this essay to gather evidence
for or against the generative shift hypothesis, and assess
whether, and how fast, it might happen. Rather, we take
the position of assuming it will happen, and attempting to
analyse the role of formal systems in such a future.

Effectively guiding a generative model to produce the de-
sired outcome is an area of active research (e.g., [65, 106,
118]). Current commercial tools can generate code from nat-
uralistic language “prompts”, or auto-complete partially writ-
ten code, or a combination of both. For non-programmers,
the main mode of interaction is via language. This opens the
possibility for EUP to become an activity that does not rely
on learning or engaging with a formal programming system
at all.

5https://github.com/features/copilot (last accessed 25 April 2023)

https://github.com/features/copilot
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Generative AI therefore raises a critical, perhaps existen-
tial question for EUP research: what is the role of the cur-
rent research agenda which aims to help users learn for-
mal systems, or reduce the expertise requirements of formal
systems? In a world where generative models are highly
performant at translating naturalistic language into code,
is there still a role for learning and interaction with formal
systems for EUPs? Put simply: will code remain a relevant
user interface for end-user programming?

5 Does Code Still Matter? Evaluating the
Value Propositions of Formal Systems

To answer whether code may become irrelevant for EUPs, it
may help to enumerate some current reasons that using a
formal system, or combining a formal system with genera-
tive AI, might still result in a superior user experience than
interacting purely through informal language. This section
will discuss the following, possibly incomplete, list of rea-
sons why code still matters: limited abilities, control, agency,
awareness of the possible, explanation and interpretation,
debugging, trust, and the illusion of informality. We will also
consider the extent to which each value proposition might
endure or become less relevant, as generative AI improves.
Limited abilities. The first reason is simply that gener-

ative AI can fail to correctly “translate” a natural language
prompt into a suitable and correct program. It is difficult to
draw clear boundaries around what these models can and
cannot do. For one, they are opaque and non-deterministic,
and can produce widely divergent responses to the same
query. For another, the response is heavily influenced by the
prompt, the training data, hyperparameters, and any other
heuristics or processing applied to the input or output in
a particular system. Finally, the state of the art is rapidly
evolving. Thus, it would not be appropriate to make gen-
eral statements such as “generative AI cannot currently solve
problem X” because it makes a universal claim about the
capabilities of every system, with their own ensemble of
models, heuristics, training data, etc. Rather, every system’s
response is fundamentally unique and varies depending upon
the prompt, heuristics, and hyperparameters.

With these caveats in mind, it is worth looking at a small
set of examples of generative AI failure, only to illustrate the
kinds of problems that are not typically solved by end-user
tools as of this writing in 2023.
The first example (Listing 1) comes from a paper explor-

ing the limitations of GitHub copilot for CS1 problems [22],
where copilot generates an incorrect function for calculating
the average length of strings in a list, by generating nonsen-
sical arithmetic. The second example (Listing 2) comes from
Khatry et al. [50] and shows another simple example where
the generated code satisfies one of the requested conditionals
but ignores the other.

1 # Given a list of strings and a string s,

2 # return the average length of all strings

3 # containing s.

4

5 def averageContainingStringS(strings , s):

6 count = 0

7 for string in strings:

8 if s in string:

9 count += 1

10 return len(s) * count / len(strings)

Listing 1. Python code generation failure example from
Denny et al. [22].

1 Prompt: "Select all rows where the entry in column

2 'gamma ' is less than 40 and select all rows where

3 the entry in column 'gamma ' is more than 53"

4

5 Response:

6 Table.SelectRows (#" Table1",each [gamma ]<40)

Listing 2. Code generation failure example from Khatry et
al. [50].

1 Prompt: "How many super bowls has New Orleans won"

2

3 Response:

4 df[df['Host City'] == 'New Orleans ']['Winner '].

count()

Listing 3. Python code generation failure example from Liu
et al. [64].

The final example (Listing 3) is drawn from a paper ap-
plying code generation models to data analysis problems in
spreadsheets, where the full problem context can be seen
[64]. In this case, the code has incorrectly selected the “Host
City” column to compute a count of relevant strings, whereas
it should have selected the “Winner” column. Liu et al. [64]
characterise several types of failure modes with examples,
such as the generation of non-executable code, selection of
incorrect input columns, incorrect output formats (e.g., the
generated code overwrites a column instead of generating
a new one), or generating raw data output rather than a
calculation.
As these examples suggest, there are situations where

generating the required code is either beyond the capabilities
of generative AI, or for some reason or another incorrect
code is generated even if it is within current capabilities. To
cope with such situations, EUPs might need to engage with
a formal system.

On the other hand, at the time of writing in early 2023, we
are in a transitional moment with generative AI technology.
It is clear that generative models will continue improving due



Onward! ’23, October 25–27, 2023, Cascais, Portugal Advait Sarkar

to the current strategy of increasing the scaling of parameters
and training data.6
Therefore, the problem of limited abilities, by definition,

may seem to ameliorate as generative models improve. How-
ever, as the capabilities for automation improve, so might
the demand for automation; it would be a fallacy to assume
that EUP demands are stable over time and that today’s EUP
tasks are representative of future ones. Transport planners
often engage in road-widening schemes to alleviate traffic
congestion, only to find that the increased capacity is im-
mediately consumed by increased demand [71]. In the 19th
century, economist William Jevons observed that improve-
ments in the efficiency of coal engines paradoxically resulted
in an increased demand for coal [2]. These are examples of
“rebound effects”, where gains in efficiency, capacity, and ca-
pability, are offset by changes in human behaviour. Similarly,
the improvement of generative AI in addressing basic tasks
may result in end-user demand for even more sophisticated
and nuanced automation, which again shifts the goalposts
for AI. On the other hand, EUPs already find engaging with
formal systems a challenge; it is therefore difficult to see
how engagement with formal systems might be a suitable
fallback in the nuanced cases where generative models of
the future fail.

Control. The second reason is to give direct and nuanced
control over the behaviour of the system. Composing a pro-
gram using a formal system allows users to directly express
both “what” to compute and “how” to compute it. It allows
EUPs to directly implement desired operations, as well as
avoid undesired ones (e.g., avoiding a very slow API call, or
avoiding a lookup of private data if it is unnecessary).

Formal systems offer direct and nuanced control, but vary-
ing degrees of control can also be achieved using informal
systems. For instance, faceted natural language prompts
which specify input and output types, or decompose a prob-
lem into smaller steps, offer increased control while retaining
the relative informality of natural language [64, 74]. As gen-
erative models improve in performance, providing control
without resorting to formal systems will be an important
target for the EUP research agenda.
Agency. Related to control, the third reason is agency

[18], a term from cognitive neuroscience referring to the
feeling of being an active agent able to effect change in the
world. A sense of agency improves the EUP experience, a lack
of agency worsens it. Learning to code in a formal system
has been associated with a sense of agency, and the related
concept of computer self-efficacy [7].
It is important to note that while control and agency are

related, they are distinct constructs. Control refers to the per-
ception of influence over the external environment, whereas
6This trend is almost certainly not going to continue indefinitely; we are
approaching limits of computation and data availability, and others have
pointed out various limitations to the so-called “scaling hypothesis” [45, 89,
99, 114], but a discussion of this is out of scope.

agency focuses on the perception of being an intentional
actor who can initiate and execute actions. Both control and
agency play crucial roles in human experience, motivation,
and well-being.
Though they are often interdependent, it is possible to

have agency without (some types of) control. For example,
“agency is influenced by control specified at different hierar-
chical levels. [...] when higher-level control is exercised (i.e.,
goal-level control) lower level control processes (i.e., perceptuo-
motor control) have no influence on sense of agency” [63].
Conversely, it is also possible to have (some types of) control
without agency. For instance, studies of assisted mouse cur-
sor pointing (an example of a lower-level perceptuo-motor
process) have shown that “beyond a certain level of assistance
users experienced a detectable loss in their sense of agency”,
even when the user had full goal-level control (i.e., the final
destination of the cursor) [18].

An interesting question posed by the generative shift for
interface design, therefore, is what types of control over the
generation process are necessary or sufficient for creating
a sense of agency. Direct control via a formal system can
create a sense of agency, but just as there are alternative
ways of offering control, so there are alternative ways of
fostering agency. At one extreme, the sense of agency can
be manipulated using placebo controls (such as the notori-
ous pedestrian traffic light buttons that serve only to pacify
impatient pedestrians and have no effect on the scheduled
changes of the lights [72]). Moreover, user agency is a com-
plex, multi-level phenomenon: the overall agency of an EUP
might increase with the increased automation capabilities
offered by generative AI, even if they find it difficult to con-
trol the behaviour of the AI in particular instances due to the
lack of a formal system. As with control, fostering and main-
taining an appropriate sense of agency will be an important
target for the EUP research agenda.

Awareness of the possible. The fourth reason that learn-
ing and using a formal system is still useful is the “awareness
of the possible” [91]; experience with a formal system gives
users a thought language within which to define problems
and envision potential solutions. Knowing that something
can be automated is as important as knowing how to au-
tomate it; a user with a powerful generative AI that can
automate some task is still at a disadvantage if they do not
conceive of that task as something which can be automated.
This benefit of formal systems may be surpassed by im-

proved generative AI as well as other interaction design tech-
niques. Generative models may be able to suggest potential
suitable automations and different strategies for implement-
ing them, educating the user along the way. For example, in
the field of data analysis, the aim of Intelligent Discovery
Assistants (IDAs) has been to support users to form a strat-
egy for achieving some analysis goal [98]; similarly research
into exploratory programming [48] aims to support users in
shaping their goals through experimentation. These fields
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have produced general interaction techniques for visualis-
ing and interacting with a possibility space which may be
applied to interaction with generative models, without re-
quiring end-users to engage with code. As with the previous
points, facilitating this awareness with generative models
will also be an important target for EUP research.

Explanation, interpretation, and debugging. Research
has shown that explaining the behaviour of AI-driven EUP
systems is desirable for many reasons [57]; allowing EUPs
to engage with the formal system(s) in which a generative
model might emit scripts is one way (albeit not the only way)
to provide explanation and interpretability.

Debugging is closely related to explanation and interpre-
tation. Engagement with formal systems is a potentially su-
perior way for EUPs to find and fix errors, than engaging
with a generative model purely through natural language.
For example, if the script generated by a generative model
contains an off-by-one error, viewing the generated code
might make it significantly easier to identify and correct it.

Formal systems offer a predictable route towards explana-
tion, interpretation, and debugging. Yet each of these already
presents a formidable challenge for EUPs, indeed much EUP
research focuses on helping EUPs carry out each of these
activities by scaffolding formal systems to overcome their
limitations (e.g., the “idea garden” [41]). The design challenge
is likely to increase further as generative models improve
at synthesizing more sophisticated programs. We probably
want different approaches to explanation which do not rely
on engagement with formal systems; EUP and interactive ma-
chine learning research has already been developing various
techniques that may be suitable starting points [54, 57].

Trust. Formal systems allow EUPs to verify the behaviour
of the generated code in terms of well-understood and well-
trusted procedures. For instance, when a spreadsheet user
sees that a sum is calculated with the spreadsheet SUM func-
tion, they trust that it is correctly computing the sum be-
cause it is a deterministic algorithm written and checked by
a trusted party (e.g., Microsoft or Google). Inspecting the
formal output of a generative model may therefore be an im-
portant route towards trusting the result. It is worth noting
here, though, that code “correctness” is not as important to
EUPs as it is to professional software developers; research
has shown that EUPs commonly use incorrect or incomplete
code if it helps them partially automate their workflow, and
are happy to manually correct errors, or accept errors which
they see as irrelevant to the task at hand [81].

Expressing a computation in terms of trusted and verified
operations (such as SUM) is an important route for establish-
ing trust in the correctness of generated code. This strength
of formal systems is unlikely to disappear simply by improv-
ing the performance of current models. Generative models
can be asked to explain code in natural language, but they are
prone to hallucination, as their output represents statistically
likely completions rather than true and verifiable statements

[80]. In the future, it may be possible to constrain explana-
tions of a script to refer to provably correct and verifiable
procedures. To pursue this strategy and develop usable EUP
systems along these lines will require a collaborative effort
between researchers skilled in generative AI, programming
languages, and human-centric end-user programming.
Illusion of informality. The eighth and final reason is

slightly unlike the others, and is rather a meta-level obser-
vation about the nature of using generative models. The
observation is that the disappearance of formality may be an
illusion; generative models still require high levels of craft
expertise to use effectively, and the shift to “prompt engi-
neering” hasn’t eliminated programming at all, but simply
shifted it into a higher level of abstraction. This is a per-
spective harboured by some (though not all) professional
software developers who use generative AI assistance in
their work [94].

As generative models get better, will “prompt engineering”
remain a form of skilled craft practice that is distinct from
ordinary communication skills, or will generative models
reach a point where they can interpret truly arbitrary nat-
ural language at or exceeding human proficiency? On one
hand, Miller and others have pointed out that a major hurdle
for AI to interpret the meaning of a query is understanding
the context of that query [73, 89], with the implication that
future models, which will become better at including or in-
ferring this context, will allow for more informal querying
styles. On the other hand, the imprecision of natural lan-
guage, particularly when it comes to discourse on matters of
logic, mathematics, philosophy, and science, has long been
seen as a major drawback and spurred many attempts to
design more logically “perfect” languages [25, 78]. Indeed,
the program of analytic philosophy which was born out of
such concerns eventually gave rise to our modern program-
ming languages [3], and it is interesting that programming
via generative models brings us back, full circle, to natural
language. However, the trend of improving generative mod-
els seems to imply that rather than “prompt engineering”
remaining just like programming but at a higher level of ab-
straction, the application of language formality for precision,
brevity, etc. in future systems will become more social and
discretionary. Language for instructing generative models
may develop much as scientific or legal language develops
as a way for scientists and lawyers to communicate more
effectively: organically, through power relations enacted by
individuals, groups, and institutions [29].

6 Limitations and Challenges Posed by
Generative AI in End-User Programming

There are many limitations and challenges of applying gen-
erative AI in end-user programming. Many of the challenges
and ethical issues around trust, verification, privacy, bias,
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credit, and accountability are not unique to end-user pro-
gramming: they apply to all applications of AI to software
development, and at the broadest level they apply to all ap-
plications of AI.
The focus of this paper is on the role of formal systems

in the future of end-user programming, and a detailed dis-
cussion of ethical challenges would diverge from this focus.
These have been extensively reviewed in recent research
[102, 109, 117]. Nonetheless, it is worth briefly acknowledg-
ing these challenges to highlight that the generative shift
is not an uncontestedly positive improvement for end-user
programmers.

Problems for CS education. There is concern that gener-
ative AI may undermine the learning of novice programmers
[6, 23]. Besides issues of academic integrity and misconduct,
educators are apprehensive that over-reliance on genera-
tive AI may hinder the development of novice programmers’
metacognition and encourage what is considered “bad habits”
in code.
Errors. Generative AI systems may not always produce

high-quality outputs, and the generated outputs may contain
errors or inconsistencies that are hard to detect or correct
by end-user programmers [94].

Trust and transparency. Generative AI systems may not
be able to explain how they generate their outputs, or why
they choose certain outputs over others [89]. This may make
it difficult for end-user programmers to trust or verify the
generated code, or to understand its logic and functional-
ity. They may not provide any documentation or comments
for the generated code, or provide incorrect documentation,
or may not allow the end-user programmer to modify or
customise the code.

Privacy and security. Code generated by generative AI
systems may collect, store, or use personal or sensitive data
from end-users or other sources, such as health records, bio-
metric data, or financial data. This may raise concerns about
the protection of data privacy and security, and the potential
for data breaches, misuse, or abuse. They may access or ex-
pose confidential or proprietary information from end-users
or their clients [34].
Misinformation. Generative AI systems may generate

outputs that are false, misleading, or deceptive, either in-
tentionally or unintentionally. Generative AI models can
produce outputs that are coherent and convincing, but not
necessarily accurate or factual. They can also invent refer-
ences and sources that do not exist, or contain biases from
the training data. This can mislead or confuse end-user pro-
grammers who rely on generated code for their own use. For
example, a generative AI tool may generate a code snippet
that performs a data analysis, but the results may be incor-
rect or skewed by the underlying data or model assumptions.
This may create risks of misinformation and manipulation,
and undermine the trustworthiness and credibility of infor-
mation sources.

Bias and discrimination. Generative AI systems may
generate outputs that are unfair, biased, or discriminatory,
either intentionally or unintentionally. They may generate
code that reflects or amplifies existing social biases or stereo-
types, such as gender, race, or ethnicity [8]. This may result
in harms or injustices to individuals or groups, such as ex-
clusion, marginalisation, or oppression.
Accountability. Generative AI systems may generate

outputs that have significant impacts on end-users or other
parties, such as legal, financial, or health outcomes. They
may generate code that violates laws, regulations, or ethical
norms, or that causes harms or damages to end-users or their
stakeholders. This may raise questions about the accountabil-
ity and responsibility for the outputs and their consequences,
and the allocation of liability and compensation in case of
harms or damages.

Attribution and ownership. Generative AI models can
create outputs that are similar or identical to existing human-
created artefacts, such as code, images, text, etc. This raises
questions about the attribution and ownership of the gener-
ated outputs, and the potential for plagiarism, infringement,
or misuse of intellectual property [90]. End-user program-
mers may not be aware of the original sources of the gener-
ated code, or the legal and ethical implications of using it for
their own purposes.

In response to these challenges, researchers have proposed
several complementary solutions [33, 34]:
Ethical design. Generative AI systems should be de-

signed and developed with ethical principles and values in
mind, such as fairness, transparency, explainability, privacy,
security, and human dignity. Tools should incorporatemecha-
nisms for data protection, output verification, bias mitigation,
and user feedback.

Critical use. Generative AI systems should be used criti-
cally, and deployed with ethical standards and guidelines in
mind, such as professional codes of conduct, industry best
practices, and regulatory frameworks. End-user program-
mers need to be aware of the potential risks and challenges
of using such tools.

Governance. Generative AI systems should be subject to
ethical oversight and governance by various stakeholders,
such as developers, providers, users, regulators, auditors,
and ethicists. Tools should be monitored and evaluated by
independent third parties for its performance, quality, safety,
reliability, and accountability.

7 Implications for End-User Programming
Research

We’ve explored how the generative shift results in a renewed
research agenda around the role of formal systems in end-
user programming, with a particular focus on control, agency,
explanation and debugging, and awareness of the possible.



Will Code Remain Relevant for End-User Programming with Generative AI? Onward! ’23, October 25–27, 2023, Cascais, Portugal

This contrasts with two of the three main foci of prior gen-
erations of EUP research (described in Section 1): improving
the ability of EUPs to learn formal systems, and to reduce
the expertise requirements of formal systems. What might a
research agenda for end-user programming look like in the
wake of the generative shift?

Learning to fish. The importance of learning how to
code for end-user programmers in a world where generative
AI can provide answers is a complex issue that parallels the
allegory of teaching a man to fish: “Give a man a fish, and you
feed him for a day. Teach a man to fish, and you feed him for a
lifetime”. While the availability of generative AI systems that
can provide direct answers may initially seem to diminish
the need for coding skills, the underlying implications reveal
a more nuanced perspective. Coding goes beyond the mere
act of obtaining answers; it fosters self-sufficiency and cul-
tivates a deeper understanding of the underlying processes
and algorithms involved. By learning how to code, end-user
programmers gain the ability to create their own solutions,
adapt existing ones, and address unique challenges effec-
tively. This empowerment leads to a greater sense of control
and creativity, enabling them to solve problems beyond the
scope of what AI systems can provide. It has been argued
that coding skills facilitate critical thinking, problem-solving,
and logical reasoning, which are valuable assets in various
domains [121]. While generative AI can offer immediate so-
lutions, relying solely on it can result in dependency and
limit the potential for innovation. Therefore, while genera-
tive AI presents opportunities for efficiency and convenience,
the significance of learning how to code persists, promoting
independence, adaptability, and a deeper understanding of
computational principles.
But is this really true of end-user programming? Is self-

sufficiency really an important optimisation goal, if gener-
ative AI is consistently capable of solving end-user tasks?
That is, do we still need to teach the man to fish if he can
simply receive fish on demand? It is possible that the an-
swer is “no”; as much previous research has shown, in many
end-user programming tasks the user may be content to use
“incorrect” programs as well as manual methods in order to
make progress towards a task [10, 81]. Unlike in a CS edu-
cation or professional programming setting, the task comes
first, and any educational or critical thinking outcomes are
viewed as secondary. There are also objections to the univer-
salising viewpoints of computational thinking, and evidence
that learning to code does not in itself develop computational
thinking skills [21].
A related issue has been explored by Potthast et al. [84]

in the context of information retrieval: “the dilemma of the
direct answer”. The question is to what extent search engine
technology is responsible for synthesising information on
the web to address the user’s particular query. They iden-
tify various trade-offs both on the user side (e.g., the cog-
nitive workload of analysing retrieved documents versus

the accuracy of the answer) and system-side (e.g., the or-
ganisation of information for automated processing versus
human reading). In our current context, we might think of
this as “the dilemma of direct programming”. An emergent
research agenda for end-user programming might therefore
be to ask what user-side and system-side tradeoffs emerge
as a consequence of the generative shift.

RepositioningBERTology.Generative AI-based research
must be carefully designed and evaluated in order to make
meaningful contributions to the scientific literature. An emerg-
ing pattern in research is to simply try a generative model
and see what it can do, a kind of research sometimes referred
to as “BERTology” [88]. This approach is passive: implic-
itly positioning EUP researchers outside the development
process. Moreover, the results are unlikely to be robust to
further iteration and development of generative AI (already
the term “BERTology” shows signs of ageing, as its name
refers to a family of models that is no longer considered the
state of the art). Rather, experimenting with generative AI
and developing prompting strategies is a craft practice that
should be seen as a necessary part of a research investiga-
tion, with its own forms of rigour, that feeds into broader
research questions with more enduring value. Part of this
rigour will involve identifying a clear research question or
hypothesis that is independent of the “abilities” of models,
the careful selection of a generative model that is well-suited
to the problem at hand, and ensuring that the work is repro-
ducible and transparent by detailing the models, heuristics,
hyperparameters, and prompt development methodology.

End-user software customisation. A closely related set
of concerns to end-user programming is end-user software
customisation [66]. This encompasses a wide range of activi-
ties such as changing the default settings in an application,
writing macros, and editing software source code [75], all
with the aim of tailoring software to user needs. End-user cus-
tomisation is viewed as challenging, withmany expertise and
motivational barriers, and consequently quite rare; in fact
the tendency of people to accept “default” options is a widely
documented and deployed phenomenon in behavioural sci-
ence in domains ranging across organ donation, retirement
savings, browser and search engine choices, and wireless
encryption [37, 49]. At the same time, researchers have ac-
knowledged the empowering value of end-user software
customization, and proposed various potential solutions for
increasing the customizability of software [5, 52, 83].

The generative shift may change the landscape of end-user
software customization substantially. Not only in reducing
the barriers to scripting and automation, but also in the
spectrum of potential automations, and the user’s relation-
ship with and attitude to automation and scripting. Petricek
theorises that customizable software consists of a set of “sub-
strates” [83], which are programming notations which trade
off expertise requirements versus the scope of change they
enable. For instance, in Excel, formulas have low expertise
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requirements and allow for a low scope of change to Excel
functionality, whereas VBA has comparatively higher exper-
tise requirements but enables a greater scope of change. A
hypothetically “ideal” substrate can take on a smooth gradi-
ent, so that the same programming notation or environment
can be used to make extremely small-scope changes with
correspondingly low expertise requirements, as well as broad
changes with correspondingly higher expertise requirements.
Generative AI may provide such a substrate: by mediating
between expressions of user intent in natural language, and
a wide variety of underlying technical infrastructures. For
instance, a natural language query in a spreadsheet might
be satisfied by a combination of changed settings, formulas,
and macros. Through the unified interface of naturalistic
language, the user may be able to smoothly span a broad
scope of changes.
But the implications go further: rather than the current

model of feature-rich software applications where a number
of use cases have been “captured” in code by expert software
developers [77], future applications for creating and manipu-
lating information artefacts may leave a large portion of de-
velopment and customisation for end users. In such a future,
what is the nature of the application? Is it a small set of core
features that identifies a nucleus of concerns or type of in-
formation artefact that is a useful abstraction for knowledge
workers, upon which they build? Or does the application
disappear as an organisational principle for knowledge work,
transitioning into artefact or process-oriented paradigms?
The cognitive dimensions of notations framework [31]

offers a vocabulary for evaluating the design tradeoffs made
in programming languages. However, they may also be ap-
plied to the design decisions in end-user software customis-
ability. The generative shift enables much greater end-user
flexibility in this regard, and raises some interesting implica-
tions for the cognitive dimensions framework. For instance,
the dimension viscosity refers to how difficult it is to make
small changes to the program. Consider the spreadsheet, an
archetypical end-user programming application. The spread-
sheet interface may have its own sources of viscosity, but the
spreadsheet also has multiple options for scripting and au-
tomation, such as the formula language, definition of custom
functions, andmacro-style scripting. Each of these may bring
their own sources of viscosity. Now, if the spreadsheet inter-
face can be significantly customised through scripting, the
user may be in a position to identify and ameliorate sources
of viscosity in their own workflow. This leads to the user
experience of viscosity in the interface being multifaceted,
and evolving dynamically over time, rather than relatively
fixed properties of a notation. A related set of concerns has
been explored in depth by Jakubovic et al. [40].
Quantifying end-user programmers. In 2005, Scaffidi

et al. estimated the number of end-user programmers using
US labour statistics and extrapolating from the number of
spreadsheet users [97]. This methodology works for as long

as EUP activity is strongly associated with particular appli-
cations (such as spreadsheets), but the generative shift will
enable EUP activities across many more applications and
platforms, facilitating the breakdown of application bound-
aries [77] and mitigating the pains of transitioning between
tools in the “toolbelt” style of computing [91, 107].

Attention investment.Blackwell’s Attention Investment
Model explains the behaviour of programmers in deciding
whether to automate something (e.g., write a script) or pur-
sue a manual strategy [10]. Just like a cost-benefit analysis,
Blackwell’s model posits that a programmer is likely to pur-
sue automation if the (perceived) payoff, in terms of attention
units saved by automation, minus the investment costs of
automation, is greater than the cost of following a manual
strategy, when accounting for the risk that the automation
may not work. What happens to this model when the cost
of automation is reduced to zero, or near zero? It is possible
that rather than a trade-off between the costs and benefits
of attention investment into automation, other factors will
come to dominate the automation decision, such as agency
and trust. Or perhaps there will still a cost-benefit tradeoff
in terms of attention units, but these units will be spent (and
saved) primarily on new categories of EUP activities that do
not currently exist.

Learning barriers. Ko et al. defined six learning barriers
for end-user programming systems: design, selection, coor-
dination, use, understanding, and information [55]. After the
generative shift, will EUPs face the same learning barriers?
For instance, the abstraction matching problem identified
by Sarkar et al. [94] does not fit neatly into any of these
categories. Perhaps new learning barriers will appear, some
will disappear, and some barriers will remain but their nature
will change.

Self-efficacy.Wiedenbeck et al. found that computer self-
efficacy increases substantially during introductory program-
ming courses [119]. They propose that in order to create
self-efficacy, students should practice tracing program ex-
ecution, program comprehension, and manual writing of
code. However, as a result of the generative shift, EUPs may
gain self-efficacy not from the direct authoring and compre-
hension of code, but from effectively applying tools to solve
their domain problems. Comprehending the underlying logic
and structure of the AI-generated code may require differ-
ent instructional strategies compared to tracing the logic of
manually written programs. Rather than focusing on code
directly, EUPs might learn how to explore the outputs and
performance characteristics of AI-generated code as a way
of critically analysing its behaviour and identifying potential
limitations. This approach may help EUPs develop a mental
model that incorporates an understanding of the strengths
and weaknesses of generative AI and how it aligns with their
programming goals.
Naming. Liblit et al. draw attention to (identifier) nam-

ing as a central conceptualisation mechanism and cognitive
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challenge in programming [61]. They find that programmers
employ cognitive strategies when selecting and using names,
such as following lexical and morphological conventions to
convey role information and using metaphors to facilitate
productive inferences. Natural language grammars influence
name usage, and debates arise around the polysemy of names
and their literal versus metaphorical meanings. The authors
posit that the linguistic sophistication of a programming
language may change or shift the cognitive burdens of pro-
grammers. The generative shift introduces an additional
layer of linguistic influence in the prompt language used to
control the tools as well as the language the tools may emit
(by way of code explanation, example outputs, clarification
requests, etc.). While generative AI could alleviate cognitive
burdens in code development by generating optimised and
readable code, as well as providing concise explanations of
code logic, it is unclear whether such code and explanations
can replicate the linguistic conventions, metaphors, and do-
main knowledge necessary for managing complexity, and
it is uncertain to what extent such considerations remain
central to the activity of programming as less code is written
and read directly.
Live programming. Tanimoto presented a highly in-

fluential framework for evaluating the degree of liveness
in programming environments, based on how quickly and
continuously they provide feedback to programmers about
the execution of their code [110]. After the generative shift,
live systems might need to account for different forms and
sources of feedback, besides execution feedback. For example,
generative AI could provide feedback to programmers about
the quality, readability, or maintainability of their code, or
suggest alternative or improved ways of writing their code
[39]. Moreover, generative AI could enable programmers
to use natural language, gestures, or voice commands to
express their intentions or goals, and the programming en-
vironment could generate or modify code accordingly. This
could change the notion of liveness from being based on code
editing and execution, to being based on goal specification
and realization. Alternatively, generative AI could enable
programmers to delegate some or all of their programming
tasks to intelligent agents, and monitor or intervene in their
work as needed. This could change the notion of liveness
from being based on direct manipulation and control, to
being based on supervision and guidance [111].

8 Conclusion
This essay has considered how generative AI might change
the landscape of end-user programming and end-user pro-
gramming research. The research agenda for end-user pro-
gramming has so far focused on helping people learn and
use formal systems (e.g., a programming language). How-
ever, generative AI stands to facilitate an intensification and
extensification of end-user programming activities across

many more applications and tasks, and users may interact
with generative AI primarily through informal systems of
natural language. This is the generative shift hypothesis.

Under the generative shift hypothesis, we have discussed
how several strengths of formal systems, including control,
agency, explanation, debugging, trust, may become less rel-
evant or change in nature. We propose that EUP research
may need to shift its traditional focus on formal systems to
new concerns of the practical use of generative AI.

The key takeaways are:

• The generative shift moves the focus of end-user pro-
gramming research from improving the learnability
and expertise requirements of formal systems, to new
issues of control, agency, explanation, debugging, and
the awareness of the possible.

• The generative shift affects many core theories and
concepts of end-user programming, such as end-user
software customisation, the attention investmentmodel,
learning barriers, self-efficacy, and live programming.
These may need to be revisited and revised as gen-
erative AI enables EUP to proceed in new ways and
scales.

Petricek encourages us to question the fundamental as-
sumptions of programming languages research and theory
[82]. The generative shift is an opportunity to propel EUP re-
search forward, renewing and revitalising the importance of
human-centric approaches to instructing computers, rather
than unprogrammable AI tools that ultimately take freedom
away from the user. As Blackwell calls for in Moral Codes
[9]: “If computer users have access to appropriate notations -
Moral Codes - they can use simple automation to make their
lives less mechanical, rather than more. If computer interfaces
are designed as notational spaces, they offer freedom and nego-
tiation, even forms of social organisation, complex assemblies
of intelligent decision making and deliberation, respecting the
humans creating them, rather than pretending humans were
not involved.”
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