
Should Computers Be Easy To Use?Questioning the Doctrine of
Simplicity in User Interface Design

Advait Sarkar
University of Cambridge, University College London, and Microsoft Research

United Kingdom

ABSTRACT
That computers should be easy to learn and use is a rarely-questioned
tenet of user interface design. But what do we gain from prioritis-
ing usability and learnability, and what do we lose? I explore how
simplicity is not an inevitable truth of user interface design, but
rather contingent on a series of events in the evolution of software.
Not only does a rigid adherence to this doctrine place an artificial
ceiling on the power and flexibility of software, but it is also cultur-
ally relative, privileging certain information cultures over others. I
propose that for feature-rich software, negotiated complexity is a
better target than simplicity, and we must revisit the ill-regarded
relationship between learning, documentation, and software.

CCS CONCEPTS
• Human-centered computing→ HCI theory, concepts and
models;HCI theory, concepts and models; Interaction design
theory, concepts and paradigms; • Social and professional
topics→ Cultural characteristics; History of computing; Computing
education; Computing and business.

KEYWORDS
learnability, usability, culture, critical theory
ACM Reference Format:
Advait Sarkar. 2023. Should Computers Be Easy To Use? Questioning the
Doctrine of Simplicity in User Interface Design. In Extended Abstracts of the
2023 CHI Conference on Human Factors in Computing Systems (CHI EA ’23),
April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3544549.3582741

1 THE DOCTRINE OF SIMPLICITY
To give the doctrine of simplicity a single definition is difficult, as
it appears in many variants and guises. It encapsulates a certain
ideology and set of values about computer software. It takes the
form: “computers should be easy/natural/simple to use/learn”. A
critical reader will seize upon the many possible combinations of
words in the preceding sentence, and point out that each can be
interpreted differently. “natural to use” is not the same as “easy to
learn”; certainly the design of a user study to test either proposition
will radically differ. I acknowledge these distinctions and request
the reader to indulge this temporary generalisation, because I hope

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI EA ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9422-2/23/04.
https://doi.org/10.1145/3544549.3582741

to make clear that the specific variant of the doctrine is not critical
to the following discussion, rather it is the ethos that this set of
statements encompasses, their origin, and their implications, that I
wish to bring into focus.

A corollary to the doctrine of simplicity is the doctrine of gradu-
alism, that computer users can be led to difficult concepts via easier
stepping stones. As a design principle, this translates as: at each
incremental stage of the user learning journey, give the user the
smallest necessary amount of learning, information, flexibility, and
power. This is ostensibly inspired by the way in which concepts are
presented in a particular order in a textbook or a school curricu-
lum, although the idea of “conceptual prerequisites” [31], that some
concepts inherently ‘precede’ others, is a contested pedagogical
principle. As implicit (and sometimes explicit) pedagogues, soft-
ware and its designers manifest a particular philosophy of learning
and teaching.

A reader who has worked for any period of time in human-
computer interaction research or design will have encountered
the doctrines of simplicity and gradualism. Software design can be
even viewed as the search for metaphors to make hard concepts
graspable [9]. Similar principles and values are articulated formally
and informally in design theory, design research, and in practice.
Let me draw upon a few examples to demonstrate the point that
simplicity and gradualism have been highly influential ideas in
human-computer interaction research.

Early explainable AI research discovered a limit to the amount of
information in an explanation before the user became overwhelmed
[44, 82]. This research formed the partial basis for guidelines for
human-AI interaction design [2]. Simplicity is achieved by limiting
the quantity of information presented, or by limiting (or altering) its
quality. Approaches to information limiting in explainable AI (e.g.,
“don’t overwhelm” [44]) and in data visualisation (e.g., “overview
first, zoom and filter, then details-on-demand” [89]) are arguably
more focused on quantity, whereas some interfaces apply qual-
itative gradualism, using the theory of multiple representations
[1], to guide learners through increasing levels of representational
abstraction [35, 85, 92].

In end-user programming and programming education, there
is the concept of an ‘abstraction gradient’ [30], along which pro-
gramming language features can be arranged from low to high
abstraction. Various projects improve the learnability of program-
ming systems by beginning the abstraction gradient at a low level
[81], systematically introducing syntactic abstractions [35, 59], or
using multiple representations at different levels of abstraction (an
approach rooted in mathematics education) [1, 6, 85, 92]. Petricek
characterises “no-code” or “low-code” programming systems, such
as HyperCard, by the “substrates” they offer to change the software;
in general, the larger the scope for change, the higher the difficulty

https://doi.org/10.1145/3544549.3582741
https://doi.org/10.1145/3544549.3582741
© Owner/Author 2023. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in CHI EA '23, http://dx.doi.org/10.1145/3544549.3582741.



CHI EA ’23, April 23–28, 2023, Hamburg, Germany Advait Sarkar

of operation [71]. Successful systems, he argues, apply gradualism:
“[...] the visual environment is structured in terms of several user levels
[...] that gradually unlock more advanced features of the system. [...]
This somewhat reduces the gap [...] that you need to bridge if you need
more complex change, because you are staying in the same substrate
[...] you do not get overwhelmed by all that is available, as more
advanced features are initially hidden”.

As personal computing grew in the late 1980s and early ’90s,
coinciding with the widespread deployment of graphical user in-
terfaces, the design of documentation and software help systems
became a focus for HCI research. Key findings from this research
would shape attitudes towards software learnability for decades to
come. Carroll and Rosson’s pioneering work identified the “paradox
of the active user” [14], who fails to make progress because they
prefer to tinker with the software rather than read documentation.
Rettig proclaimed that Nobody Reads Documentation [76]. Out of
these insights developed the paradigm of “minimalist instruction”
[12] and many ingenious innovations in graphical user interface
design that are taken for granted today, such as the tooltip [22].

Unfortunately, as we will see in the following sections, these
successes also instilled a kind of designer-chauvinist idea that great
design can all but eliminate the need for learning. In TrainingWheels
in a User Interface [13], a gradualist proposal that complex features
can be gated until users have achieved a certain level of expertise,
Carroll and Carrithers demur about its applicability as a permanent
solution, stating: “a more significant and longer term goal in system
design is that of defining a user interface architecture with which to
confront learnability and training issues, and with which to eliminate
the need to retrofit for learnability in the first place”.

With the growth of touchscreens, cameras, sensors, and multi-
modal computing, it became possible to control computers through
gestures. Based on the principle that gestures should require as little
learning as possible, in the mid-2000s the field of gesture elicitation
studies emerged [102], spawning over 200 studies [97] aiming to
discover gestures and symbols so natural that they pre-exist in the
user’s repertoire before they encounter a system at all.

Here I have highlighted a few manifestations of the doctrines
of simplicity and gradualism that I have encountered in my own
research. I believe that many examples besides these can be found in
many corners of human-computer interaction, user experience, and
design practice. They are deeply ingrained in our research practices
and widely-used instruments including the System Usability Scale
[10] (cited over 14,000 times) which includes questions such as “I
thought the system was easy to use” and “I would imagine that most
people would learn to use this system very quickly”, and the NASA
TLX cognitive load index [33, 34] (multiple publications, together
cited over 18,000 times), including questions such as “How much
mental and perceptual activity was required (e.g., thinking, deciding,
calculating, remembering, looking, searching, etc.)? Was the task easy
or demanding, simple or complex, exacting or forgiving?” and “How
hard did you have to work (mentally and physically) to accomplish
your level of performance?” Many researchers, myself included, rely
heavily on these instruments to evaluate designs. But is it always
an indicator of superior design, when someone can learn to use
a system very quickly? Is it always a better interface where the
task is easy, simple, and forgiving, and requires little “mental and
perceptual activity”?

These ideas are almost axiomatic, and seem like unquestionable
tenets of good user interface design. Yet this particular set of values
can be traced back to specific, contingent events in the cultural and
commercial history of computing.

2 HOW DIDWE GET HERE?
So far we have briefly encountered the doctrines of simplicity and
gradualism as we know them today, and hopefully the examples
above have shown their pervasive influence in HCI research and
practice. The title of this paper indicates that we will be questioning
that influence. As with any proposal for reform, we risk commit-
ting the fallacy of removing Chesterton’s proverbial fence [17],
proposing to dissolve an apparently outmoded institution, only
to discover the complex systemic interactions that necessitated it.
Thus it is worth attempting to understand why and how we got
here in the first place. A rough outline of the discussion that follows
is presented in Figure 1.

The first important development in the history of user inter-
face design was the conceptualization of the textual (algebraic-
sentential) programming language as the basis for instructing com-
puters. In conceiving of programming as writing code, early com-
puter scientists implicitly set forth the agenda for interface design-
ers as code being the underlying complexity that design metaphors
ought to abstract away. But this was scarcely inevitable: Arawjo
traces key cultural, commercial and technical constraints, includ-
ing institutional directives, the requirements to retrofit punch card
machines and typewriters, and even aesthetic xenophobia (Frege’s
two-dimensional notation was ridiculed as “Japanese” [58]), which
led to the dominance of the sentential paradigm over visual, dia-
grammatic alternatives [5].

Moreover, within textual programming languages the view of
programming as operationalised mathematics is only one possibil-
ity. Babbage mostly conceived of programming this way, though
Lovelace saw further, speculating in a celebrated example that pro-
grams could be used to manipulate music [90]. Nonetheless, in the
1950s the nascent computer “science” was proximal to many po-
tential disciplinary homes, from electrical engineering, physics, as-
tronomy, and biology to communications, espionage, archival, and
art. The mathematisation of computer science (and consequently
its principal working material, the programming language) was a
result of computer science’s struggle for disciplinary legitimacy
[21]. Eager to be taken seriously as a science, and eager to capture
investment from government agencies and private enterprise, the
discipline aligned itself to the comforting objectivity and inarguable
utility of applied mathematics. The discipline was gradually so en-
trenched in this particular episteme [24] that it became virtually
impossible to imagine any alternative.

Yet it was in the imagination of an alternative that interface
design emerged. The practice of programming computers began as
complex, requiring manuals and study. The use of language to hold
power and separate classes is a tale that recurs throughout human
history. The Egyptian priestly class kept power through guarded
knowledge of the sacred hieroglyphs, hindu brahmin priests kept
power through their rites and incantations [61], catholic priests
kept power over the interpretation of the Bible through their knowl-
edge of ecclesiastical Latin [39], and in modern society, a new class



Should Computers Be Easy To Use? CHI EA ’23, April 23–28, 2023, Hamburg, Germany

Figure 1: An overview of developments in the history of the doctrine of simplicity.
of scientific priests maintains power through jargon and institu-
tional gatekeeping [25]. The emancipatory era of the 1960s and
’70s was characterised by the rapid withdrawal of global colonial
powers from physical occupation [20], tumultuous developments in
attitudes to student empowerment in adult education [26, 96], and
the increasing export of American democratic values to solidify the
Western postwar hegemony [66]. Swept along amidst these vast
social and political currents, personal computing symbolised the
new information age, and it became apparent that a democratic
future was one in which everyone could use a computer, and that
meant democratising the language of instruction.

It was not just the starry-eyed ideal of liberal democracy that
coaxed computing out of the hands of scientist-priests, but also the
prospect of fabulous wealth. Bill Gates took on the mission to place
“a computer on every desk” [28]. Though Xerox did not rise to the
opportunity for commercialising Alan Kay’s visionary research at
PARC [62], the introduction of the graphical user interface in the
1980s by Apple and Microsoft became the next formative step in
the doctrine of simplicity. Simplicity and its perception became a
marketing and competitive advantage. Apple’s marketing materi-
als focused on the simplicity of the operating system, lampooned
competitor systems as requiring stacks of heavy manuals,1 later
adopting the taglines “there is no step 3” and “it just works”. Apple’s
design interpreted simplicity as radical minimalism in software and
hardware (often at the expense of actual usability, as noted in the
case of the single-button mouse, and the buttonless iPod shuffle
[74]). The adoption of simplicity as a design principle in this era
invoked, sometimes explicitly, a notion of political superiority. Ap-
ple’s famous “1984” ad compared the usability of the Macintosh
to the revolution in an Orwellian communist dystopia (with IBM,
the incumbent giant, in the position of the repressive state). It has
been widely discussed that Steve Jobs’ minimalism, which spanned
his attire, his communication style, and his products, was heavily
influenced by his personal experiences with ascetic Buddhism [78].

But more important than these explicit politicisations were the
effects that the simplicity shift had on society, research and practice.
1For example: https://www.youtube.com/watch?v=3vq9p00T08I

Winner sets out two mechanisms by which technology exerts polit-
ical influence [101], which we can see in the case of the graphical
user interface. First, the specific design features of a technology
or device enable certain forms of power (low bridges permit only
certain vehicles to pass underneath). Second, the decision to adopt
a technology or not, for instance a certain type of machine, or a
certain standard, lends itself to certain forms of power being in-
voked because that is what is needed to make the technology work
(a ship’s captain requires absolute authority to manage the control
of the ship in crisis). In the case of the graphical user interface, its
commercial success rapidly eliminated other forms of interface. At
the same time, the power of programmers and the software indus-
try was consolidated, because while graphical user interfaces were
usable, they were fundamentally restricted; end-users could not de-
scribe new behaviours – you need a programmer for that. End-user
programming research has ever since battled this limitation [42],
with the development of powerful paradigms such as programming-
by-demonstration [45] and programming-by-example [51], and a
few widespread commercial successes, such as the spreadsheet. Yet
the legacy of mathematisation and algebraic-sentential program-
ming still looms over these efforts; it is still that particular form
and vision of computing that we seek to make more accessible.

Desite Apple’s mockery of manuals, through the 1980s and ’90s
most software still came with manuals, and it was culturally ac-
cepted that some explicit training and learning investment was
required to use computer software. This was reasonable given that
a lot of software was used in a business context, and the longevity
of software was high. Updates were rare and expensive. Due to
the distribution bottleneck of floppy disks, CD-ROMs, and the re-
tail supply chain, software packages were updated once a year at
most. Software was largely sold with a permanent license, rather
than the now-predominant subscription model. In such a climate,
it made sense to approach software as a tool with relatively fixed
behaviour, because time invested in learning had a high likelihood
of a long-term return in productivity.

This began to change in the late 1990s with the World-Wide-
Web. Initially conceived as a method for sending communications

https://www.youtube.com/watch?v=3vq9p00T08I


CHI EA ’23, April 23–28, 2023, Hamburg, Germany Advait Sarkar

and documents, websites were simple and usable by default — as
usable as a document — to use the Web, one needed only to be
able to read and write. Yet unlike static documents, the Web did
have minimal levels of interaction: links could be clicked, forms
could be submitted. From this humble basis emerged a tidal wave
of speculative applications, from search engines, to news media, to
e-commerce. This Wild-Wild-West came to an abrupt halt with the
burst of the dot-com bubble in 2000, when it became apparent that
not just any Internet business would succeed.

A business that had succeeded though, was Google. In the af-
termath of the dot-com bubble a scramble began to discover the
formula for success on the Web. Google’s success, in part, began to
be attributed to its minimalist design, which stood in stark contrast
to the “cluttered” interfaces of its competitors: Yahoo, AltaVista,
Lycos, and Ask Jeeves, which inherited their design from book in-
dexes and print media. This began a period of intense mythmaking
in design culture where simplicity became conflated with usability,
and was exalted as the key to building commercially successful
software. This was the era of Jenson’s The Simplicity Shift [40]
and Maeda’s Laws of Simplicity [54]. The influential design firm
IDEO began its crusade to instill “design thinking” in every cor-
poration, having expanded its interests from designing chairs and
toothbrushes to management consultancy [65]. Products and their
designers began to assume the mantle of instruction manuals and
teachers, and a product that needed effort to learn was not only
considered a commercially inferior prospect, but also reflective of
poor design.

The earlyWeb had trained users to expect document-like levels of
simplicity, but in the 2000s, with Flash, Java Applets, and JavaScript,
the interactive potential of Web technologies grew. Social media
sites such as Facebook and Twitter were the great winners of this
new Web ecosystem and it is no coincidence that they remain key
players in advancing infrastructure for enriching web apps, such
as React and Bootstrap. Similarly Google, which did not own a
desktop operating system, poured resources into building Chrome,
which subsequently became the dominant Web browser. Google
and other browser vendors, through their involvement in the W3C
consortium and WHATWG groups, pursued key capabilities in
multimedia, local storage, multi-threading, and high-performance
JavaScript, facilitating the functional parity of Web applications
with desktop applications.

Web “sites” to be visited and Web “pages” to be read became
Web “applications” to be used [47]. But while these applications
are as rich, capable, and complex as “native” desktop software, the
cultural expectations of the static Web persist. When users open
an application in a browser, they expect to use it without investing
effort to learn the interface, as though it were a document. Through
gradual enrichment, the designers of web apps became trapped,
like the proverbial frogs in boiling water, between their ambitions
for their software and the expectations of users.

RichWeb applications transformed the status quo of rare updates
and software continuity; the Web enabled instant and continuous
deployment of new features. Mobile operating systems were born
into this new regime and adopted the same model. Through the
2010s, traditional desktop software also began adopting the contin-
uous deployment engineering model (and its attendant economic

Figure 2: Product design in a commercial environment that
rewards simplicity can result in a poor equilibrium. TheNash
equilibrium (top left) is not the Pareto efficient state (bottom
right).

model of subscriptions), facilitated by the rapid growth of broad-
band and 3G/4Gmobile data networks.With the benefits of frequent
updates came another cultural shift in the value proposition of in-
vesting time and effort into learning software. What if a feature’s
appearance or behaviour changes? What if it is removed? With
software subject to constant change, it becomes difficult to predict
whether effort invested in learning will pay off. This puts further
pressure on software to be simple and self-evident.

The research focus of HCI (and CHI in particular) had aligned
itself with this landscape of discretionary commercial software
use, thus separating it from its predecessor, human factors, which
largely targeted the design of systems used within organizations by
employees with little choice in the matter [32]. Weiser’s research
agenda of ubiquitous computing [100], a vision of “quiet”, “invis-
ible”, and “seamless” interfaces, became entrenched as a design
objective. SIGDOC, the ACM special interest group on documenta-
tion, home to much early research on software help systems, was
threatened with obsolescence and rebranded itself as “design of
communication” [57]. This accompanied a broader turn in computer
science education away from direct instruction towards construc-
tivist learning, the idea that computing is best learned through
experimentation, not instruction [36], which is reflected in con-
temporary studies of software skill acquisition [80, 83, 84]. The
practical nature of academic HCI also played a role: longitudinal
studies are hard, single-session lab studies are (relatively!) easy.
Short studies are more conducive to the annual drumbeat of con-
ference submission cycles. We develop too many new systems for
each to be evaluated in long-term use; the ability to rapidly test
and explore various design spaces is an asset to our discipline, but
it places pressure on design to make its value evident on the basis
of brief and shallow encounters.

In this current climate, where users evaluate potential software
purchases and subscriptions within minutes, and impressions of
websites are made in less than a second [52], first impressions of
usability matter and are critical to commercial success. But in cer-
tain cases, this creates a moral hazard to make software appear
more usable by making it less useful. The design of commercial soft-
ware aimed at discretionary users has fallen into a Nash equilibrium
which is not Pareto efficient, a situationwhichmost introductions to
game theory illustrate using the example of the prisoner’s dilemma
[69]. Each prisoner can unilaterally maximise their outcome by
confessing, but this results in a sub-optimal equilibrium, where the



Should Computers Be Easy To Use? CHI EA ’23, April 23–28, 2023, Hamburg, Germany

optimal solution would have been for both to cooperate. As in the
prisoner’s dilemma, products optimised for long-term use can lose
out to those which appear easier to use on a preliminary evaluation
(Figure 2). This market environment puts pressure on designers to
hyper-optimise for making products easy to use without learning
investment, but which may not result in the best long-term user
experience or empowerment.

3 WHATWE LOSE WHEN SOFTWARE IS
‘EASY’

In some cases the benefits to users of a competitive market pressure
to make software ‘easy’ are obvious; users clearly stand to gain
when a brilliant metaphor or interface technique makes the same
capabilities available to the user with lower cognitive and learning
costs. But what might they lose when designers adhere to these
doctrines?

What about software whose entire purpose is to create radical
leaps in users’ thinking? What if such software requires users to
shift their worldview in order to use it? This might bring to mind
sweeping concepts such as Kuhn’s paradigm shifts [43], for in-
stance the transition away from phlogiston theory in the 1770s
with Lavoisier’s isolation of oxygen. Or Galileo’s shifts in natural
interpretations, for instance the re-evaluation of sense-perception
as a source of truth regarding motion [23]. Software may even aim
to serve as Wittgenstein’s ladder [7], which a learner must climb
only to throw away, achieving an enduring cognitive extension
[37].

But we needn’t reach for such extremes: there are many common
examples of concepts, skills, and tools that are hard to learn, which
may take years, and thousands of hours of deliberate practice [3],
but those who learn them have transformed themselves and their
minds. Mathematics, language, writing, playing a musical instru-
ment, playing a sport: almost any human activity worth doing falls
into this category.

It might seem like a stretch to draw an analogy between playing
a musical instrument and using software, but in fact some kinds
of software also fall into this category. This includes spreadsheet
software, such as Microsoft Excel and Google Sheets, design soft-
ware such as Adobe Photoshop and Autodesk AutoCAD, digital
audio workstations such as Apple’s Logic Pro and Ableton Live. It
includes specialist applications in domains as wide as accounting,
urban planning, architecture, astrophysics; indeed almost every
discipline and profession is served by some unique and distinc-
tive software tools that form a core and indispensable part of its
practice. These applications are used intensively, and over long
periods of time, often entire careers. Their feature set is vast and
complex, and users need to work to build skills. Often, professional
identity and status is deeply entwined with the skillful use of spe-
cific software, resulting in a fascinating power dynamic between
users, software, and its designers [64, 86]. Users develop craft prac-
tices, idioms, and pattern languages for using such software. Such
software often has thriving online and offline communities where
expert knowledge is exchanged. While individual practitioners may
make considered software purchase decisions based on long-term
evaluation, even software of this kind is subject to commercial
pressures, as companies seek to expand market share by capturing

casual usage, and increasing the appeal of software in B2B sales
settings, where software procurement decisions are often made by
managerial non-practitioners on behalf of the entire organisation.

As a shorthand, let us call this particular kind of software prax-
isware. The term “praxis” is widely used, and often loosely used
simply to mean “practice”. I am drawing particularly from the no-
tions of praxis due firstly to Sartre [91], who situates praxis within
division of labour and for whom praxis constitutes activities that
consolidate and protect class and profession, and secondly to Freire
[26], who situates praxis within education and empowerment and
for whom praxis constitutes activities of “reflection and action
directed at [societal] structures to be transformed”.

It is in praxisware that the tradeoffs between superficial simplic-
ity and long-term user experience are most acute. This software
aims to facilitate rich and complex activities that are antagonised
by the ideal of simplicity. As Stolterman notes [93]: “Humans seem
to seek and enjoy certain experiences of complexity. In some contexts,
complexity may be understood as richness, generally found to be a
positive and desired quality. [...] The simpler an environment is, the
easier it is to understand and deal with, but at the same time, the
more it lacks the richness and stimulus that we seem to appreciate
and enjoy”. Norman’s foreword to Laurel’s Computers as Theatre
explains: [47]: “[...] we get the greatest pleasure from our ability to
overcome early failures and adversaries. If everything runs perfectly
and smoothly with no opportunity to deploy our powers and skills,
pleasure is diminished. Human emotion is sensitive to change; starting
low and ending high is a far better experience than one that is always
high. Is this a cry for deliberate placement of obstacles and confusions?
Obviously not, but it is a cry for a look at the temporal dimensions,
at engagement, agency, and the rise and fall of dramatic tension.”

This critique of simplicity echoes previous critiques voiced in
third-wave HCI, which questioned values of ‘seamlessness’ and
Weiser’s idea that technology should be quiet and fade into the
background. In reaction it was pointed out that in some scenarios,
‘seamful’ design might be preferable, to take advantage of the fact
that user activities often interweave heterogenous media [16]. Am-
biguity was not universally to be avoided, but could be drawn upon
as a design resource to create engaging and thought-provoking
experiences, and practically address technological limitations [29].
More recently, with growing concerns around dispossession and
loss of agency to AI algorithms, researchers have proposed that
designs could be deliberately antagonistic as a societal intervention
[38]: “Could ‘non-user-friendly’ design successfully harness the feeling
of confusion and dissatisfaction to raise political awareness, to cause
a cognitive glitch?” Eric Li of the Museum of Modern Art, drawing
upon Guy Debord’s concept of derivé (drifting), conjectures [50]:
“But what if we [used] design to provoke a type of thinking that art
has provoked for centuries? [...] Imagine that, when you go to your
browser, the furniture and interface elements that greet you aren’t
there to speed you onto your next destination on the Web. [...] What if
it were filled with a random work of art? Time slows down [and you]
pause, enjoying the sights, before diving back into the ever-flowing
river of information. [...] Perhaps, like a dérive, not the most direct
route, but far more enjoyable. A breath of air.”

Computer games are another genre of software that are often
complex, and have steep learning curves, but are nonetheless tol-
erated (even enjoyed) by users and are commercially successful.



CHI EA ’23, April 23–28, 2023, Hamburg, Germany Advait Sarkar

Researchers have attempted to understand the efficacy of game
tutorials [4], and proposed that game heuristics such as challenge,
fantasy, and curiosity might be applied to software design more
broadly [55]. Yet there remains a fundamental difference: games
are experiential software, interacted with purely for their own sake,
where users are intrinsically motivated to learn. In contrast, pro-
ductivity software is used as part of a process that represents and
manipulates outcomes external to the software itself, i.e. in the
“real” world. As Laurel puts it, ““Productivity” as a class of applica-
tions is better characterized, not by the concreteness of outcomes, but
by their seriousness vis-à-vis the real world” [47]. For this reason,
games do not generally fall into the category of praxisware, and
are not subject to the same historical and commercial influences or
cultural expectations. This does not mean that there is nothing to
learn from game design, but it does mean that we cannot expect
that importing strategies for managing software complexity from
games will be straightforward, or effective.

What is ‘easier’ or ‘harder’ is often a matter of perspective shift
that only comes with expertise of a new paradigm. The enlighten-
ment was partly fuelled by algebraic mathematical notation that
replaced the earlier form of writing mathematical statements us-
ing long-form naturalistic language sentences [68, 90]. With the
benefit of hindsight, algebraic notation clearly made mathematics
easier: symbolic manipulation unlocked efficiencies and scaffolded
thinking in a manner that was simply impossible with the old no-
tation. But using ordinary language to describe mathematics is
also in some sense easier, because there is no new notation and its
attendant manipulations to learn; this is precisely why it had been
used for so long in the first place. Thus a tool that is initially easier
(natural language sentences) may have a glass ceiling, and a tool
that is initially harder (algebraic notation) can, after a perspective
shift, make subsequent tasks easier.

Even to describe language or writing as “easy” or “intuitive”
ignores the fact that learning to speak and write a language takes
years of practice, something that is apparent to anyone who has
tried to learn a second language after childhood. Chomskians might
argue that the capacity for language is innate, but they will not
argue the same for the ability to speak any particular language. In
text entry research, a language-adjacent corner of human-computer
interaction, the importance of evaluating not the initial usability of
a system but rather its emergent usability over time and learning
investment is well-documented. Researchers reference the “power
law” of learning (or practice) [63] which describes how a user’s
proficiency improves over time, with practice and learning. Ward
et al. propose that the slope of this curve, rather than the intercept,
is a superior indicator of a text entry system’s quality [99]. At the
same time, it is acknowledged that the commercial acceptance of
such systems hinges on first-use and early-use experience (i.e., the
intercept) [53]. Text entry is a microcosm that reflects the simplicity
trap.

O’Hara et al. critique the rhetoric of “naturalness” that pervades
research in touchless user interfaces [67], finding that rather than
being a “representation of our gesture” and the “ability to infer intent”
to facilitate the “exchange of information”, naturalness arises from
“the practices of specific communities in particular social settings [...]
we need to approach the design of these systems in terms of how they

might allow a beneficial reconfiguration of practices and how we
experience the world in new ways accordingly.”2 In the case of prax-
isware, notions of objective simplicity and information exchange
are antagonistic to the community-based and often professionalised
nature of its use.

The ideal of simplicity as a goal for software design is culturally
relative. Simplicity is interpreted and enacted at several levels of
software design, from aesthetic, to functional, to the conceptuali-
sation and unitisation of the user experience across a computing
platform.

An example of aesthetic notions of simplicity differing can be
found in Japanese web design. Websites aimed at Japanese audi-
ences are often dense with information and text (Figure 3). Visi-
tors whose primary experience is of contemporary Euro-American
Web design often perceive it as “cluttered”, and far from simple.
But this evaluation applies an inappropriate measure of simplicity.
Japanese web design reflects cultural, technical and linguistic differ-
ences, encompassing considerations such as the logographic nature
of kanji and low-bandwidth mobile data connections [19, 79, 98].
Japan’s sociotechnocultural environment identifies simplicity with
legibility and information richness [56, 75].3 Contrast this with
the Euro-American identification of simplicity with whitespace
and low information per “screenful”, typified by websites such as
Medium.com. Here the transformation of the Western information
aesthetic from print to digital media via the dot-com crisis is clear;
Europe had its own long tradition of dense texts (one need only
look at the pages of medieval manuscripts, decorated and inscribed
in every available space to maximise the precious vellum), which
did not survive the transition to the Western Web.

While consumers wish for simple tools, they cannot wish for
simple tasks. The challenges and ambitions of work and life are
irreducibly complex, and to this we aim to apply simple, intuitive
tools. These two forces are in tension, and in the West they have
resulted in a “toolbelt” style of computing [94]. This has roots as
far back as the UNIX design philosophy that “A UNIX program
should do one thing well, and leave unrelated tasks to other programs”
[72]. The idea is that each individual piece of software remains
small, modular, and robust, but can be composed with others: a
workflow that mirrors the epistemic process of pure mathematics.
This mathematico-computational view of working is supremely
appropriate for mathematicians, but less so for other domains, as
acknowledged in Lenat’s humility-laden note on Why AM and
EURISKO appear to work [49]. In the late 1990s, Sumner and Stolze
characterised this as ushering in the “toolbelt era” [94], where most
complex daily tasks require the coordinated use of several pieces of
software, with often jarring frictions and disconnects as the activity
transitions between tools. The picture has not changed at the time
of writing. Even in praxisware, which often aims to contain as large
a portion of common and professional workflows as possible, it
is often observed how auxiliary tools are used to finesse, subvert,
2Their critique is somewhat more sophisticated than mine, which contends that claims
of “natural” interfaces should consider how natural it can be to coax a shard of electri-
fied silicon to do your bidding.
3This is not limited to Japan; eye-tracking studies comparing American and Chinese
users found radical differences in web page reading patterns, implying that different
information layouts are required to achieve the same level of perceived usability for
people with different cultural backgrounds [48].



Should Computers Be Easy To Use? CHI EA ’23, April 23–28, 2023, Hamburg, Germany

Figure 3: A sample of screenshots of popular Japanese websites, an alternative manifestation of simplicity (December 2022).
Sources (left to right): https://www.goo.ne.jp/ © NTT Resonant Inc., https://www.yomiuri.co.jp/ © The Yomiuri Shimbun,
https://www.rakuten.co.jp/ © Rakuten Group, Inc., https://www.cosme.net/ © istyle,inc.

combine, marshall, and supplement the information workflow in
conjunction with the “primary” tool [15, 46], with ensuing frictions.

The toolbelt philosophy, in turn, puts pressure on knowledge
work to accommodate its tendency for modularisation and simplifi-
cation, thus contributing to a Marxian breakdown of knowledge
work [27], nudging it in a direction where people only click but-
tons for small-scope machines to perform simple “mimeomorphic”
actions [18]. A genre of software that has already reached this ex-
treme is social media and recommender systems, where the loss
of user agency is well-documented. Žižek (via Pfaller) describes
these as “interpassive” [103] (by irreverent contrast to interactive),
giving the user only the slightest illusion of control while scrolling
through their Instagram, Twitter, or TikTok feeds, while in practice
any given user’s experience is driven entirely by the algorithm [38].
The simplification of knowledge work is accompanied by a shift in
emphasis from production to consumption. Praxisware concerns
itself inherently with production, thus the doctrine of simplicity
antagonises its relationship with information and knowledge.

The Chinese software landscape, through a combination of gov-
ernment policy and domestic grit, has developed a compelling al-
ternative to the toolbelt. Known as “superapps”, platforms such as
WeChat encompass, connect, and consolidate wide-ranging func-
tions including communications, payment, and numerous retail
and service verticals. As Lee describes [48]: “In effect, WeChat has
taken on the functionality of Facebook, iMessage, Uber, Expedia, eVite,
Instagram, Skype, PayPal, Grubhub, Amazon, LimeBike, WebMD, and
many more. It isn’t a perfect substitute for any one of those apps, but
it can perform most of the core functions of each, with frictionless
mobile payments already built in. This all marks a stark contrast
to the “app constellation” model in Silicon Valley in which each app
sticks to a strictly prescribed set of functions.” Moreover, the organ-
isation of these firms acknowledges that information technology
is only one participant in a larger world where tasks, goods and
services involve flesh and oil: “American internet companies tend
to take a “light” approach [...] sharing information, closing knowl-
edge gaps, and connecting people digitally. [...] In China, companies
tend to go “heavy.” They don’t want to just build the platform—they
want to recruit each seller, handle the goods, run the delivery team,
supply the scooters, repair those scooters, and control the payment.”

The Chinese example puts a twist on “appropriate technology” [87],
a well-intentioned concept often invoked as an epithet meaning
“cheap technology for poor people”, showing that that it is not only
the material basis of technology, but also its ideology (such as its
aesthetics of simplicity) that may be culturally inappropriate.

Examining the foundations of the doctrine of simplicity also re-
veals cracks. In particular, the inherent universalism in the “paradox
of the active user”, the idea that users overwhelmingly prefer to
learn-by-doing, that they do not wish to invest time in learning, and
that “nobody reads documentation”, is simply false. In her pioneer-
ing work with the GenderMag framework [11], Margaret Burnett
and her collaborators drew evidence from dozens of studies to show
that individuals have a variety of information processing and learn-
ing styles. Some indeed prefer to tinker, and learn by doing, eager
to seek immediate visible progress. Others are slow and methodical,
tend to seek help from others, and look for information and training.
GenderMag catalogues these differences and shows that certain
styles of learning and information processing are more common in
certain demographic segments, with a particular focus on gender.
The astonishing and illuminating conclusion is that in privileg-
ing certain information processing styles over others, designers
introduce gender bias into software. As such, software design in
a regime where learning-by-doing is prioritised at the expense of
help, documentation, manuals, and training, also introduces biases.
There is another chapter to the history outlined in Section 2: it
was in 1984, amidst the birth of personal computing, that computer
science developed its gaping gender disparity [41]. Why? Analyses
point to a feedback loop seeded by the commercialisation strategy
adopted by companies at the time: to sell computers to children as
toys. But toy advertising is notoriously gendered, and in this precise
moment, the industry “picked a side” and decided that computing
was for boys [60], setting off a cascade of downstream effects where
women entered computing majors with much less prior experience
than their peers identifying as men. Thus each time a new, more
democratic (and therefore lucrative) generation of interface arises,
commercial pressures intercede to privilege retail success over user
experience, excluding whoever need be. And so the market pres-
sure for simplicity exerts normative and exclusionary effects on
praxisware and its communities.

https://www.goo.ne.jp/
https://www.yomiuri.co.jp/
https://www.rakuten.co.jp/
https://www.cosme.net/


CHI EA ’23, April 23–28, 2023, Hamburg, Germany Advait Sarkar

4 TOWARDS A DOCTRINE OF NEGOTIATED
COMPLEXITY

In the genesis of the minimal learning paradigm, researchers had
already identified that the tension between investing in learning
materials, versus investing in simplicity by design, would be a
problem for praxisware. In 1995, Sellen and Nicol concluded [88]:
“The distinction between on-line help [i.e., interactive documentation]
and the user interface is not necessarily clear-cut. [...] The aim should
be to provide simple, self-explanatory interfaces. Although the ideal is
commendable, reaching it seems unrealistic at the moment, especially
considering the imbalance between the power and flexibility that much
contemporary software affords and the state of the art in intelligent
interfaces.”

Nearly thirty years later, it is clear that just advancing the “state
of the art in intelligent interfaces” is unlikely to ever be sufficient
for tackling the “power and flexibility” of praxisware. One design
response attempting to bridge the obvious dissonance has been the
rise of “in-app teaching”, such as call-outs and dialogs announcing
and explaining new features. Yet these still suffer from the cultural
hangover of minimal learning, and often are heavily constrained
in the amount of information they present to the user. Competing
for attention in a digital landscape overloaded with notifications
[8, 95], these simple interventions are often ignored entirely.

A deeper limitation of in-app teaching is the premise that users
need to learn just-in-time, when they are at their computers to
perform a specific task. This is a powerful form of learning because
it can take advantage of the intrinsic motivation and context to
complete a particular task, but can be inhibited by the same need,
if the opportunity to learn is seen as a distraction. The success or
failure of such interventions hinges on accurately modelling the
user’s current knowledge as well as their intent, both of which are
exquisitely challenging.

The alternative is for the user to learn ahead of time, perhapswith
the background context of a set of certain domain-relevant tasks,
but where the tasks are not ends in themselves. This shifts learning
from being task-oriented to being capability- or vision-oriented.
Knowing what can be done, an awareness of the possible, empowers
users in entirely different ways. As Rittel and Webber note [77],
conceiving a problem in a certain way prefigures its solution. It
shifts the nature of the task itself. A spreadsheet user who knows a
priori how to write formulas will approach the same task differently
from one who does not; starting with planning the data that must
go in the spreadsheet and structuring it appropriately [15]. By the
time the spreadsheet is open and ready, the “task” has already taken
on a vastly different nature for the two users. And on a moment-
by-moment basis, the patchwork of methods and available options
explored by each user is also radically different, shaped by their
differing awareness of possibilities adjacent to the current state of
their spreadsheet [70]. Ahead of time, task-independent learning
complements the just-in-time approach to facilitate these shifts in
awareness and task conceptualisation.

The fact that some users are willing to invest time and effort into
learning is already documented, but assumed to be rare and not
reflective of mainstream behaviour, and relying on this willingness
is seen as a risk to commercial success. However, recent trends on
the social media platforms TikTok and Instagram reveal that the

desire for ahead of time learning might be far more widespread
than previously thought. I am referring to the meteoric rise of prax-
isware influencers, who present short tutorials on complex software
such as Excel or Photoshop, often accompanied by jaunty tunes
and dancing (as per the TikTok vernacular style), some of whom
have followers numbering in millions [73]. Unlike a platform like
YouTube, where tutorials can actively be searched for and watched
on demand, the engagement patterns of TikTok and Instagram are
those of passive, serendipitous consumption. Why would millions
of people follow a TikTok influencer who teaches Excel? It is not
because they expect to stumble upon a video that will help them
with a task they’re currently working on. It is because in moments
of passive consumption, on the sofa, on the commute, they expect to
benefit from ahead of time learning, and enhancing their awareness
of the possible. These millions of subscribers are strong evidence
of the mainstream desire, and acceptance, of learning investment
for praxisware.

We must re-evaluate our attitude to tutorials, learning materials,
and the user learning journey, and reconsider their position as a key
part of interface design. Wemust also re-evaluate our attitude to the
ideals of simplicity in software use. In this paper I have proposed
that “easy to use” is an inappropriate criterion for evaluating com-
plex, feature-rich praxisware. This is a call for negotiated complexity,
complexity in software which arises as the result of optimisation
for intensive, long-term use, in consultation with communities of
practitioners, shielded from commercial pressure to design for first
impressions, and with the unapologetic assumption that users will
invest months, or years, in ahead of time learning and deliberate
practice. Complexity is negotiated as the acceptable trade-off be-
tween time invested in learning a tool and the resultant power it
gives the practitioner. Complexity is negotiated between designers
and practitioners over long-term use, not fixed, and evolves with
the needs of the community. The agenda for negotiated complexity
in praxisware has among its implications for research and design
the following:

• Rather than usability as a universal property of a user inter-
face with respect to some notion of what a monolithic user
might find ‘intuitive’ and ‘natural’, we define usability as a
function of an interface paired with well-designed learning
and instructional materials.

• We consider investment in learning and instruction as a
first-class citizen that participates with and complements
the design of the system.

• We reward longitudinal research that engages seriously with
practitioner communities, and accommodate it within the
academic cycle, perhaps by developing new methods for
evaluating the contribution of an ongoing longitudinal study,
or new tracks that prioritise such work.

• We begin to shift customer culture, when appropriate, to
redress the adverse commercial incentives for simplicity,
and to save ourselves from the prisoner’s dilemma. While
this may seem challenging, loci of deliberate learning such
as TikTok seem like a good place to start.

In this paper, I have described the doctrine of simplicity, which
has come to be a dominant ideal in user interface research and de-
sign. By tracing key events in the history of computing and design



Should Computers Be Easy To Use? CHI EA ’23, April 23–28, 2023, Hamburg, Germany

research, I have attempted to explain how this ideal has taken hold,
at least in the West. Such ideals create a self-sustaining market pres-
sure that often countermands the design of complex, feature-rich
software. Such software, termed praxisware, has several proper-
ties which cause it to be vulnerable to the doctrine of simplicity.
For praxisware, a better ideal to aim for is negotiated complexity,
considering user learning as part and parcel of user interface design.

ACKNOWLEDGMENTS
Thanks to Roger Yin for conversations about the prisoner’s dilemma,
to Andy Gordon and Ian Drosos for their thoughts on drafts of the
paper, and to my reviewers for their helpful critiques.

REFERENCES
[1] Shaaron Ainsworth. 1999. The functions of multiple representations. Computers

& education 33, 2-3 (1999), 131–152.
[2] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira

Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N Bennett, Kori Inkpen,
et al. 2019. Guidelines for human-AI interaction. In Proceedings of the 2019 chi
conference on human factors in computing systems. 1–13.

[3] K Anders Ericsson. 2008. Deliberate practice and acquisition of expert per-
formance: a general overview. Academic emergency medicine 15, 11 (2008),
988–994.

[4] Erik Andersen, Eleanor O’rourke, Yun-En Liu, Rich Snider, Jeff Lowdermilk,
David Truong, Seth Cooper, and Zoran Popovic. 2012. The impact of tutorials
on games of varying complexity. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 59–68.

[5] Ian Arawjo. 2020. To write code: The cultural fabrication of programming
notation and practice. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–15.

[6] David Bau, D Anthony Bau, Mathew Dawson, and C Sydney Pickens. 2015.
Pencil code: block code for a text world. In Proceedings of the 14th International
Conference on Interaction Design and Children. 445–448.

[7] Anat Biletzki and Anat Matar. 2021. Ludwig Wittgenstein. In The Stanford
Encyclopedia of Philosophy (Winter 2021 ed.), Edward N. Zalta (Ed.). Metaphysics
Research Lab, Stanford University.

[8] Michael Mose Biskjaer, Peter Dalsgaard, and Kim Halskov. 2016. Taking action
on distraction. Interactions 23, 6 (2016), 48–53.

[9] Alan F Blackwell. 2006. The reification of metaphor as a design tool. ACM
Transactions on Computer-Human Interaction (TOCHI) 13, 4 (2006), 490–530.

[10] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability
evaluation in industry 189, 194 (1996), 4–7.

[11] Margaret Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Laura Beck-
with, Irwin Kwan, Anicia Peters, and William Jernigan. 2016. GenderMag: A
method for evaluating software’s gender inclusiveness. Interacting with Com-
puters 28, 6 (2016), 760–787.

[12] John M Carroll. 1990. The Nurnberg funnel: Designing minimalist instruction for
practical computer skill. MIT press.

[13] JohnMCarroll and Caroline Carrithers. 1984. Training wheels in a user interface.
Commun. ACM 27, 8 (1984), 800–806.

[14] John M. Carroll and Mary Beth Rosson. 1987. Paradox of the Active User. MIT
Press, Cambridge, MA, USA, 80–111.

[15] George Chalhoub and Advait Sarkar. 2022. “It’s Freedom to Put Things Where
My Mind Wants”: Understanding and Improving the User Experience of Struc-
turing Data in Spreadsheets. In Proceedings of the 2022 CHI Conference on Hu-
man Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 585, 24 pages.
https://doi.org/10.1145/3491102.3501833

[16] Matthew Chalmers and Areti Galani. 2004. Seamful interweaving: heterogene-
ity in the theory and design of interactive systems. In Proceedings of the 5th
conference on Designing interactive systems: processes, practices, methods, and
techniques. 243–252.

[17] Gilbert Keith Chesterton. 1929. The thing. Aeterna Press.
[18] Harry M Collins, Martin Kusch, et al. 1998. The shape of actions: What humans

and machines can do. MIT press.
[19] David. 2013. Why Japanese web design is so... different. https://randomwire.

com/why-japanese-web-design-is-so-different/
[20] Prasenjit Duara. 2004. Introduction: The decolonization of Asia and Africa in

the twentieth century. In Decolonization. Routledge, 19–36.
[21] Nathan L Ensmenger. 2012. The computer boys take over: Computers, program-

mers, and the politics of technical expertise. Mit Press.

[22] David K Farkas. 1993. The role of balloon help. ACM SIGDOC Asterisk Journal
of Computer Documentation 17, 2 (1993), 3–19.

[23] Paul Feyerabend. 2010. Against method: Outline of an anarchistic theory of
knowledge. Verso Books.

[24] Michel Foucault. 1966. Lesmots et les choses: une archéologie des sciences humaines.
Editions Gallimard.

[25] Michel Foucault. 1969. L’archéologie du savoir. Vol. 1. Gallimard Paris.
[26] Paulo Freire. 1968. Pedagogía del oprimido. (1968).
[27] Christian Fuchs. 2014. Digital Labour and Karl Marx. Routledge.
[28] Bill Gates. 2007. A robot in every home. Scientific American 296, 1 (2007), 58–65.
[29] William W Gaver, Jacob Beaver, and Steve Benford. 2003. Ambiguity as a

resource for design. In Proceedings of the SIGCHI conference on Human factors in
computing systems. 233–240.

[30] Thomas R. G. Green and Marian Petre. 1996. Usability analysis of visual pro-
gramming environments: a ‘cognitive dimensions’ framework. Journal of Visual
Languages & Computing 7, 2 (1996), 131–174.

[31] Sharon A Griffin, Robbie Case, and Robert S Siegler. 1994. Rightstart: Provid-
ing the central conceptual prerequisites for first formal learning of arithmetic to
students at risk for school failure. The MIT Press.

[32] Jonathan Grudin. 2009. AI and HCI: Two fields divided by a common focus. Ai
Magazine 30, 4 (2009), 48–48.

[33] Sandra G Hart. 2006. NASA-task load index (NASA-TLX); 20 years later. In
Proceedings of the human factors and ergonomics society annual meeting, Vol. 50.
Sage publications Sage CA: Los Angeles, CA, 904–908.

[34] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX
(Task Load Index): Results of empirical and theoretical research. In Advances in
psychology. Vol. 52. Elsevier, 139–183.

[35] Felienne Hermans. 2020. Hedy: a gradual language for programming education.
In Proceedings of the 2020 ACM conference on international computing education
research. 259–270.

[36] Felienne Hermans and Marileen Smit. 2018. Explicit Direct Instruction in
Programming Education.. In PPIG.

[37] José Hernández-Orallo and Karina Vold. 2019. AI extenders: the ethical and
societal implications of humans cognitively extended by AI. In Proceedings of
the 2019 AAAI/ACM Conference on AI, Ethics, and Society. 507–513.

[38] Tomasz Hollanek. 2019. Non-user-friendly: Staging resistance with interpassive
user experience design. A Peer-Reviewed Journal About 8, 1 (2019), 184–193.

[39] Kristian Jensen. 1996. The humanist reform of Latin and Latin teaching. The
Cambridge companion to Renaissance humanism (1996), 63–81.

[40] Scott Jenson. 2002. The Simplicity Shift: Innovative design tactics in a corporate
world. Cambridge University Press.

[41] Caitlin Kenney and Steve Henn. 2014. When women stopped cod-
ing. https://www.npr.org/sections/money/2014/10/17/356944145/episode-576-
when-women-stopped-coding

[42] Amy J Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
et al. 2011. The state of the art in end-user software engineering. ACMComputing
Surveys (CSUR) 43, 3 (2011), 1–44.

[43] Thomas S Kuhn. 1970. The structure of scientific revolutions. Vol. 111. Chicago
University of Chicago Press.

[44] Todd Kulesza, Simone Stumpf, Margaret Burnett, Sherry Yang, Irwin Kwan, and
Weng-Keen Wong. 2013. Too much, too little, or just right? Ways explanations
impact end users’ mental models. In 2013 IEEE Symposium on visual languages
and human centric computing. IEEE, 3–10.

[45] David Kurlander, Allen Cypher, and Daniel Conrad Halbert. 1993. Watch what I
do: programming by demonstration. MIT press.

[46] Ida Larsen-Ledet, Henrik Korsgaard, and Susanne Bødker. 2020. Collabora-
tive writing across multiple artifact ecologies. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems. 1–14.

[47] Brenda Laurel. 2013. Computers as theatre. Addison-Wesley.
[48] Kai-Fu Lee. 2018. AI superpowers: China, Silicon Valley, and the new world order.

Houghton Mifflin.
[49] Douglas B Lenat and John Seely Brown. 1984. Why AM and EURISKO appear

to work. Artificial intelligence 23, 3 (1984), 269–294.
[50] Eric Li. 2021. Taking a walk across the internet. https://www.moma.org/

magazine/articles/677
[51] Henry Lieberman. 2001. Your wish is my command: Programming by example.

Morgan Kaufmann.
[52] Gitte Lindgaard, Gary Fernandes, Cathy Dudek, and Judith Brown. 2006. Atten-

tion web designers: You have 50 milliseconds to make a good first impression!
Behaviour & information technology 25, 2 (2006), 115–126.

[53] I Scott MacKenzie, Shawn X Zhang, and R William Soukoreff. 1999. Text entry
using soft keyboards. Behaviour & information technology 18, 4 (1999), 235–244.

[54] John Maeda. 2006. The laws of simplicity. MIT press.
[55] Thomas W Malone. 1982. Heuristics for designing enjoyable user interfaces:

Lessons from computer games. In Proceedings of the 1982 conference on Human
factors in computing systems. 63–68.

https://doi.org/10.1145/3491102.3501833
https://randomwire.com/why-japanese-web-design-is-so-different/
https://randomwire.com/why-japanese-web-design-is-so-different/
https://www.npr.org/sections/money/2014/10/17/356944145/episode-576-when-women-stopped-coding
https://www.npr.org/sections/money/2014/10/17/356944145/episode-576-when-women-stopped-coding
https://www.moma.org/magazine/articles/677
https://www.moma.org/magazine/articles/677


CHI EA ’23, April 23–28, 2023, Hamburg, Germany Advait Sarkar

[56] Douglass McGowan. 2018. The truth about Japanese web design.
https://multilingual.com/issues/aug-sep-2018/the-truth-about-japanese-
web-design/

[57] Brad Mehlenbacher. 2011. The evolution of communication design: a brief
history of the ACM SIGDOC. In Proceedings of the 29th ACM international
conference on Design of communication. 249–256.

[58] Richard L Mendelsohn. 2005. The Philosophy of Gottlob Frege. Cambridge
University Press.

[59] Gary Miller and Felienne Hermans. 2016. Gradual structuring in the spreadsheet
paradigm. In 2016 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 240–241.

[60] Thomas J Misa. 2011. Gender codes: Why women are leaving computing. John
Wiley & Sons.

[61] Gaetano Mosca. 1939. On the Ruling Class. In Translated by Hannah D. Kahn;
edited and revised, with an Introduction, by Arthur Livingston. New York: McGraw-
Hill.

[62] Brad A Myers. 1998. A brief history of human-computer interaction technology.
interactions 5, 2 (1998), 44–54.

[63] Allen Newell and P Rosenbloom. 1981. Mechanisms of skill acquisition and the
law of practice. Cognitive skills and their acquisition (1981).

[64] Midas Nouwens and Clemens Nylandsted Klokmose. 2018. The application and
its consequences for non-standard knowledge work. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems. 1–12.

[65] Bruce Nussbaum. 2004. The Power of Design. BusinessWeek (2004).
[66] Joseph S Nye. 1990. Soft power. Foreign policy 80 (1990), 153–171.
[67] Kenton O’hara, Richard Harper, Helena Mentis, Abigail Sellen, and Alex Taylor.

2013. On the naturalness of touchless: putting the “interaction” back into NUI.
ACM Transactions on Computer-Human Interaction (TOCHI) 20, 1 (2013), 1–25.

[68] Arika Okrent. 2009. In the land of invented languages: Esperanto rock stars,
Klingon poets, Loglan lovers, and the mad dreamers who tried to build a perfect
language. Random House.

[69] Martin J Osborne. 2004. An introduction to game theory. Vol. 3. Oxford university
press New York.

[70] Rahul Pandita, Chris Parnin, Felienne Hermans, and EmersonMurphy-Hill. 2018.
No half-measures: A study of manual and tool-assisted end-user programming
tasks in Excel. In 2018 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 95–103.

[71] Tomas Petricek. 2022. No-code, no thought? substrates for simple programming
for all. https://tomasp.net/blog/2022/no-code-substrates/

[72] Rob Pike and Brian Kernighan. 1984. Program design in the UNIX environment.
AT&T Bell Laboratories Technical Journal 63, 8 (1984), 1595–1605.

[73] Kieran Press-Reynolds. 2021. TikToks on how to use Excel spreadsheets are
getting billions of views and building one of the best communities on the
platform. https://www.insider.com/tiktok-influencer-excel-spreadsheets-viral-
miss-video-2021-12

[74] David Price. 2022. Has Apple actually overcome its fear of but-
tons? https://www.macworld.com/article/1008276/different-think-buttons-
ipod-iphone-apple-watch.html

[75] Rean. 2020. Deciphering the curious case of how Japanese web design works
[op-ed]. https://www.hongkiat.com/blog/japanese-web-design/

[76] Marc Rettig. 1991. Nobody reads documentation. Commun. ACM 34, 7 (1991),
19–24.

[77] Horst WJ Rittel and Melvin M Webber. 1973. Dilemmas in a general theory of
planning. Policy sciences 4, 2 (1973), 155–169.

[78] Brett T Robinson. 2015. Appletopia: Media technology and the religious imagina-
tion of Steve Jobs. Baylor University Press.

[79] The Marketing Samurai. 2018. How Japanese website design differs from the
West. https://www.infocubic.co.jp/en/blog/website-design/how-japanese-
website-design-differs-from-the-west/

[80] Advait Sarkar. 2016. Constructivist design for interactive machine learning. In
Proceedings of the 2016 CHI conference extended abstracts on human factors in
computing systems. 1467–1475.

[81] Advait Sarkar. 2016. Interactive analytical modelling. Ph. D. Dissertation. Uni-
versity of Cambridge, Cambridge, United Kingdom.

[82] Advait Sarkar. 2022. Is explainable AI a race against model complexity?. InWork-
shop on Transparency and Explanations in Smart Systems (TeXSS), in conjunction
with ACM Intelligent User Interfaces (IUI 2022) (CEUR Workshop Proceedings,
3124). 192–199. http://ceur-ws.org/Vol-3124/paper22.pdf

[83] Advait Sarkar, Judith W Borghouts, Anusha Iyer, Sneha Khullar, Christian Can-
ton, Felienne Hermans, Andrew DGordon, and JackWilliams. 2020. Spreadsheet
use and programming experience: An exploratory survey. In Extended Abstracts
of the 2020 CHI Conference on Human Factors in Computing Systems. 1–9.

[84] Advait Sarkar and Andrew D. Gordon. 2018. How do people learn to use
spreadsheets? (Work in progress). In Proceedings of the 29th Annual Conference
of the Psychology of Programming Interest Group (PPIG 2018). 28–35.

[85] Advait Sarkar, Andrew D Gordon, Simon Peyton Jones, and Neil Toronto. 2018.
Calculation view: multiple-representation editing in spreadsheets. In 2018 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE,

85–93.
[86] Advait Sarkar, Sruti Srinivasa Ragavan, Jack Williams, and Andrew D Gordon.

2022. End-user encounters with lambda abstraction in spreadsheets: Apollo’s
bow or Achilles’ heel?. In 2022 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 1–11.

[87] Ernst Friedrich Schumacher. 2011. Small is beautiful: A study of economics as if
people mattered. Random House.

[88] Abigail Sellen and Anne Nicol. 1995. Building user-centered on-line help. In
Readings in Human–Computer Interaction. Elsevier, 718–723.

[89] Ben Shneiderman. 2003. The eyes have it: A task by data type taxonomy for
information visualizations. In The craft of information visualization. Elsevier,
364–371.

[90] Laura J Snyder. 2012. The philosophical breakfast club: four remarkable friends
who transformed science and changed the world. Crown.

[91] Kate Soper. 1986. Humanism and anti-humanism. HarperCollins, London,
England.

[92] Alistair Stead and Alan F Blackwell. 2014. Learning syntax as notational exper-
tise when using drawbridge. In Proceedings of the Psychology of Programming
Interest Group Annual Conference (PPIG 2014). Citeseer, 41–52.

[93] Erik Stolterman. 2008. The nature of design practice and implications for
interaction design research. International Journal of Design 2, 1 (2008).

[94] Tamara Sumner and Markus Stolze. 1997. Evolution, not revolution: Participa-
tory design in the toolbelt era. In Computers and design in context. 1–26.

[95] Alvin Toffler. 1970. Future Shock. Random House.
[96] Maria A Vetter. 2019. Global 1968: Implications for Adult Education in Social

Movements. (2019).
[97] Santiago Villarreal-Narvaez, Jean Vanderdonckt, Radu-Daniel Vatavu, and Ja-

cob O Wobbrock. 2020. A systematic review of gesture elicitation studies:
What can we learn from 216 studies?. In Proceedings of the 2020 ACM Designing
Interactive Systems Conference. 855–872.

[98] Lewis Wake. 2016. Why is Eastern Asian web design so busy?
https://digitalcommunications.wp.st-andrews.ac.uk/2016/03/03/why-is-
eastern-asian-web-design-so-busy/

[99] David J Ward, Alan F Blackwell, and David JC MacKay. 2000. Dasher—a data
entry interface using continuous gestures and language models. In Proceedings
of the 13th annual ACM symposium on User interface software and technology.
129–137.

[100] Mark Weiser. 1991. The Computer for the 21st Century. Scientific american 265,
3 (1991), 94–105.

[101] Langdon Winner. 1980. Do Artifacts Have Politics? Daedalus (1980), 121–136.
[102] Jacob OWobbrock, Htet Htet Aung, Brandon Rothrock, and Brad A Myers. 2005.

Maximizing the guessability of symbolic input. In CHI’05 extended abstracts on
Human Factors in Computing Systems. 1869–1872.

[103] Slavoj Zizek. 1998. The interpassive subject. Retrieved March 1 (1998), 2017.

https://multilingual.com/issues/aug-sep-2018/the-truth-about-japanese-web-design/
https://multilingual.com/issues/aug-sep-2018/the-truth-about-japanese-web-design/
https://tomasp.net/blog/2022/no-code-substrates/
https://www.insider.com/tiktok-influencer-excel-spreadsheets-viral-miss-video-2021-12
https://www.insider.com/tiktok-influencer-excel-spreadsheets-viral-miss-video-2021-12
https://www.macworld.com/article/1008276/different-think-buttons-ipod-iphone-apple-watch.html
https://www.macworld.com/article/1008276/different-think-buttons-ipod-iphone-apple-watch.html
https://www.hongkiat.com/blog/japanese-web-design/
https://www.infocubic.co.jp/en/blog/website-design/how-japanese-website-design-differs-from-the-west/
https://www.infocubic.co.jp/en/blog/website-design/how-japanese-website-design-differs-from-the-west/
http://ceur-ws.org/Vol-3124/paper22.pdf
https://digitalcommunications.wp.st-andrews.ac.uk/2016/03/03/why-is-eastern-asian-web-design-so-busy/
https://digitalcommunications.wp.st-andrews.ac.uk/2016/03/03/why-is-eastern-asian-web-design-so-busy/

	Abstract
	1 The doctrine of simplicity
	2 How did we get here?
	3 What we lose when software is `easy'
	4 Towards a doctrine of negotiated complexity
	Acknowledgments
	References



