
The Metacognitive Demands and Opportunities of Generative AI
Lev Tankelevitch∗
Microsoft Research

Cambridge, United Kingdom
lev.tankelevitch@microsoft.com

Viktor Kewenig∗†
University College London
London, United Kingdom

ucjuvnk@ucl.ac.uk

Auste Simkute†
University of Edinburgh

Edinburgh, United Kingdom
a.simkute@sms.ed.ac.uk

Ava Elizabeth Scott†
University College London
London, United Kingdom
ava.scott.20@ucl.ac.uk

Advait Sarkar
Microsoft Research

Cambridge, United Kingdom
advait@microsoft.com

Abigail Sellen
Microsoft Research

Cambridge, United Kingdom
asellen@microsoft.com

Sean Rintel
Microsoft Research

Cambridge, United Kingdom
serintel@microsoft.com

ABSTRACT
Generative AI (GenAI) systems offer unprecedented opportuni-
ties for transforming professional and personal work, yet present
challenges around prompting, evaluating and relying on outputs,
and optimizing workflows. We argue that metacognition—the psy-
chological ability to monitor and control one’s thoughts and be-
havior—offers a valuable lens to understand and design for these
usability challenges. Drawing on research in psychology and cogni-
tive science, and recent GenAI user studies, we illustrate howGenAI
systems impose metacognitive demands on users, requiring a high
degree of metacognitive monitoring and control. We propose these
demands could be addressed by integrating metacognitive support
strategies into GenAI systems, and by designing GenAI systems
to reduce their metacognitive demand by targeting explainability
and customizability. Metacognition offers a coherent framework
for understanding the usability challenges posed by GenAI, and
provides novel research and design directions to advance human-AI
interaction.

CCS CONCEPTS
• Human-centered computing→ HCI theory, concepts and
models; User centered design; Interaction design theory, concepts and
paradigms; • Computing methodologies → Artificial intelli-
gence.
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1 INTRODUCTION
Generative artificial intelligence (GenAI) systems—using models,
like Large Language Models (LLMs), that can generate artefacts by
using extensive parameters and training data to model and sample
from a feature space [23]—have the potential to transform personal
and professional work. Their potential stems from a unique combi-
nation of model flexibility (in their input/output space), generality
(in their applicability to a wide range of tasks), and originality (in
their ability to generate novel content) [157]. However, these same
properties also pose a challenge for designing GenAI systems to be
human-centered [34]. User studies reveal a range of usability chal-
lenges around prompting [208], evaluating and relying on outputs
[156], and deciding on an automation strategy: whether and how
to integrate GenAI into workflows [14, 154].

Recent work has sought to characterize the unique properties of
GenAI and their potential effects on users [156, 157], and to offer
technical or design roadmaps for designing human-centered GenAI
[34, 197]. However, there is not yet a coherent understanding of the
usability challenges of GenAI, much less one grounded in a theory
of human cognition. Indeed, recent work has called for founda-
tional research to understand how people interact with GenAI and
AI more broadly [99, 104]. Here, we argue that metacognition—the
psychological ability to monitor and control one’s own thought
processes [4, 62, 131, 181]—offers a valuable and unexplored per-
spective to understand and design for the usability challenges of
GenAI. Firstly, we suggest that current GenAI systems imposemulti-
ple metacognitive demands on users; understanding these demands
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can help interpret and probe the identified and potentially novel
usability challenges. Secondly, we suggest that the perspective of
metacognitive demands offers new research and design opportuni-
ties for human-AI interaction.

The metacognitive demands of working with GenAI systems
parallel those of a manager delegating tasks to a team. A manager
needs to clearly understand and formulate their goals, break down
those goals into communicable tasks, confidently assess the quality
of the team’s output, and adjust plans accordingly along the way.
Moreover, they need to decide whether, when, and how to even del-
egate tasks in the first place. Among others, these responsabilities
involve the metacognitive monitoring and control of one’s thought
processes and behavior [4, 62, 128, 181].

Analogously, current GenAI systems often require verbalized
prompting, demanding self-awareness of task goals, and decompo-
sition of tasks into sub-tasks. System outputs then need to be eval-
uated, requiring well-adjusted confidence in one’s evaluation and
prompting abilities, and metacognitive flexibility to iterate on the
prompting strategy as necessary. Alongside the local interactions
with GenAI systems, the generality of GenAI poses another, higher-
level metacognitive demand: the challenge of knowing whether and
how to incorporate GenAI into workflows—i.e., one’s ‘automation
strategy’ (see also [154]). This demands self-awareness of GenAI’s
applicability to, and impact on, one’s workflow; well-adjusted con-
fidence in manual versus GenAI-supported task completion; and
metacognitive flexibility to adapt one’s workflows as needed. We
posit that these metacognitive demands are induced by GenAI’s
model flexibility, generality, and originality.1 In §3, we draw on
metacognition research and recent user studies of GenAI to illus-
trate these metacognitive demands and offer new research direc-
tions to probe them further.

These demands can be addressed in at least two complementary
ways. Firstly, given that metacognitive abilities can be taught [45, 52,
126], we can improve users’ metacognition via metacognitive support
strategies that can be integrated into GenAI systems. Evidence-
based metacognitive support strategies include those that help
users in their planning, self-evaluation, and self-management [159].
Recent HCI work has begun to pursue this direction [173, 204],
albeit without explicitly grounding it in metacognition; we suggest
that a metacognitive lens offers new research and design directions
for augmenting GenAI system usability.

Secondly, we can reduce the metacognitive demand of GenAI
systems by designing task-appropriate approaches to GenAI ex-
plainability and customizability. We suggest that explainability can
help offload metacognitive processing from the user to the system,

1Although the perspective of metacognition is equally relevant for understanding the
usability of search engines and similar technologies, we focus our scope to GenAI
systems as they are relevantly distinct from that of search engines [157]. Firstly, they
are more flexible in their responsiveness to user prompts, in the range of implicit and
explicit parameters available to users in their prompts, and in the multi-modality of
their input/output space. Secondly, unlike search engines, they function as general-
purpose tools, able to perform content generation, discrimination, and editing, among
other functions (rather than merely retrieve existing content). Finally, unlike search
engines, current GenAI systems are non-deterministic in their responses. As we aim to
demonstrate here, all of these features place unique demands on users’ metacognition
and inform the design space of solutions to address these demands, a design space
which necessarily extends beyond that of current search engines. Relatedly, we also
note that Russell [50] proposed a connected idea of ‘meta-literacy’ for search engine
usability (see also [112]); however, this work does not delve into the psychological and
cognitive science of metacognition that is central to the current work.

and that existing explainability approaches can be augmented by
considering metacognition. Likewise, we suggest that a metacogni-
tive perspective can provide insights on approaching the end-user
customizability of GenAI systems. In §4, we draw on intervention
studies to improve metacognition and studies of GenAI prototypes
and human-AI interaction to explore research and design directions
that can address the metacognitive demands of GenAI. Critically,
we also highlight how GenAI’s model flexibility, generality, and
originality can serve as a design solution to these demands. Finally,
we discuss the relationship between cognitive load and addressing
metacognitive demands, offering ways to manage their balance. In
summary, our work makes three distinct contributions:

(1) We conceptualize and ground the usability challenges of
GenAI in an understanding of human metacognition, draw-
ing on research from psychological and cognitive science
and recent GenAI user studies.

(2) We draw from research on metacognitive interventions,
GenAI prototypes, and human-AI interaction to propose
two directions for addressing the metacognitive demands of
GenAI: improving users’ metacognition, and reducing the
metacognitive demands of GenAI.

(3) We use the metacognition lens to identify the need—and con-
crete directions—for further research into the metacognitive
demands of GenAI, and design opportunities that leverage
the unique properties of GenAI to augment system usability.

In the next sections, we define metacognition, summarizing key re-
search findings (§2); illustrate the metacognitive demands of GenAI,
focusing on prompting, evaluating and relying on outputs, and
deciding on one’s automation strategy (§3); and propose ways to
address these metacognitive demands (§4).

2 WHAT IS METACOGNITION?
Metacognition as a concept was first popularized by developmen-
tal psychologist John H. Flavell in the late 1970s [64], as he tried
to understand how children come to be aware of their own cog-
nitive processes. Subsequently, Nelson and Narens [128] showed
that while adults are able to reflect on their thoughts, they often
fail to be aware of the premises underlying their decision-making,
and do not analyze, understand, and control their thought pro-
cesses objectively. Their ‘metacognitive model’ first distinguished
between object-level and meta-level cognition. Object-level pro-
cesses reflect the basic cognitive work of perceiving, remembering,
classifying, deciding, and so on.Meta-level processes monitor those
object-level processes to assess their functioning (e.g., assessing
how well one grasped the gist of a text) and allocate resources
appropriately (e.g., deciding to re-read the text). Since then, a grow-
ing line of research has linked improved metacognition to a range
of benefits across different domains. Studies have shown that im-
proved metacognition helps individuals with management of time,
focus, and effort [212], problem-solving [67], academic performance
[45, 52, 106, 126, 180, 214], emotional well-being [200], and overall
decision-making [206].

As we argue in §3, alongside the promises of GenAI to trans-
form work, it also poses usability challenges that can be fruitfully
understood via metacognition. Nevertheless, the field of human-
computer interaction (HCI) has so far considered metacognition



The Metacognitive Demands and Opportunities of Generative AI CHI ’24, May 11–16, 2024, Honolulu, HI, USA

mainly in the context of computer science education [107, 142]. The
relative absence of metacognition research from many areas of HCI
is surprising, considering that the early work on graphical user
interfaces was, as Alan Kay concluded, “solidly intertwined with
learning” [88]. One possible reason for this absence is the confusing
plethora of existing and overlapping frameworks and theories on
metacognition. From education [106] to management [90], health-
care [36], and even sports [111], many research disciplines have
carved out their own approach to metacognition, producing mul-
tiple inconsistent terminologies and frameworks (for reviews see
[131, 181]).

To structure our analysis of the metacognitive demands of GenAI
systems, in §2.1-2.4 we present a simplified descriptive framework
of metacognition, also summarized in Figure 1. In line with most
common prior frameworks, we distinguish between metacognitive
knowledge and experiences, two different sources of information for
understanding one’s own cognition [55, 131, 181], and between the
metacognitive abilities of monitoring and control, through which
one can assess and guide their own cognition [4, 62, 129].

2.1 Metacognitive knowledge and experiences
Metacognitive knowledge, being explicit, includes people’s conscious
understanding of aspects like their strategies (e.g., memory strate-
gies [128]), reasoning abilities, decision-making, and beliefs [170].

Metacognitive experiences include anything that people can di-
rectly experience, and can be implicit, occurring without our direct
intention or awareness [55]. This includes subjective feelings, like
a feeling of familiarity, or the feeling that one has misunderstood a
passage while reading, as well as other implicit cues that provide
information about cognitive processing (e.g., ‘processing fluency’
cues, such as the speed at which a memory is retrieved) [4, 131].

Metacognitive knowledge and experiences are interrelated [64].
Metacognitive experiences can contribute to metacognitive knowl-
edge—e.g., when feelings of difficulty during problem-solving be-
come encoded as knowledge that one is poor at problem-solving.
Metacognitive knowledge can also be retrieved during metacogni-
tive experiences, for example, when one remembers that they are
poor at problem-solving when experiencing a feeling of difficulty.

2.2 Metacognitive abilities: monitoring and
control

Monitoring abilities involve the assessment of one’s own thinking,
whereas control abilities are those that directly guide one’s own
thinking. Our focus is on the monitoring and control abilities that
are most relevant to concrete task-oriented metacognitive demands
posed by GenAI (see [181] for a more in-depth taxonomy).

Relevant monitoring abilities for working with GenAI include
self-awareness and adjustment of confidence. Self-awareness is the
capacity to recognize one’s own thoughts, emotions, and actions, as
well as how these factors influence cognition [73, 212]. This includes
having a clear awareness of one’s specific goals and intentions—for
example, “What am I trying to convey with this email?”. This ability is
important for prompting GenAI and determining one’s automation
strategy (§3.1 and §3.3).

Confidence is one’s self-assessment of one’s cognitive abilities
and their application to tasks [206]—e.g., “How confident am I that

I can write this email with the appropriate tone and level of detail?”
A ‘well-adjusted’ confidence distinguishes objectively correct and
incorrect performance, and accurately matches one’s abilities.2
Confidence and its adjustment are central to decision-making and
reasoning, especially in many aspects of human-AI interaction
[4, 171] (§3.1, §3.2, and §3.3).

Relevant control abilities for working with GenAI include
metacognitive flexibility and task decomposition. Metacognitive
flexibility is the ability to adaptively shift cognitive strategies when
encountering new information, when realizing that a current strat-
egy isn’t effective, or when the demands of the task change [32]—
e.g., “I recognize that my formal tone in my emails does not match the
more conversational style of my new co-workers. I should therefore
adjust my approach while still maintaining professionalism”. It is a
hallmark of creative problem-solving [144] and has been deemed
essential for organizing and integrating a rapidly changing body of
information [120]. Metacognitive flexibility is especially important
when prompting and evaluating the output of GenAI (§3.1 and §3.2)
and determining one’s automation strategy (§3.3).

Task decomposition involves breaking down a task into con-
crete, actionable sub-tasks or steps. For instance, before writing
an email, one might set clear objectives for what specific points to
communicate—e.g., “I want to clearly explain the status of the project
and ask for feedback.” Then, one might decide on a structure for the
email, laying out the most important aspects first. These abilities
are especially important for prompting GenAI (Section 3.1). As the
example suggests, task decomposition is not solely metacognitive
because it often involves object-level cognitive processes.

Monitoring and control are interrelated [93, 95]. Monitoring (i.e.,
assessing our performance) affects control (e.g., by influencing a
change in strategies). Control (e.g., changing strategies) can also
provide feedback which affects monitoring (e.g., by altering the
assessment of our performance).

2.3 Interrelationship between knowledge and
experiences, and monitoring and control

Metacognitive knowledge and experiences interact withmonitoring
and, in turn, with control [181]. For example, adequate metacogni-
tive knowledge of the strengths and weaknesses of one’s strategies
can affect the adjustment of confidence in a solution to a prob-
lem (i.e., metacognitive monitoring). Conversely, improving mon-
itoring, such as by practicing self-awareness, can increase one’s
awareness of metacognitive experiences and knowledge. Likewise,
metacognitive experiences can influence, and be influenced by, our
metacognitive monitoring and control. For example, after expe-
riencing a sense of misunderstanding, we might unconsciously
adjust our sense of confidence (monitoring), and be prompted to
re-read a passage (control). Similarly, the impact of metacognitive
experiences might vary based on monitoring abilities. For example,
a person with better monitoring might be more attuned to these

2While beyond the scope of this work, metacognition research distinguishes between
two formal and independent aspects of confidence: resolution (also known as sen-
sitivity), the ability for confidence judgments to distinguish correct and incorrect
performance, and calibration (also known as bias), the extent to which confidence
tends to be overall higher or lower than objective performance [65, 66]. We indicate
this distinction in relevant points, but direct interested readers to the cited work for
more information.
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Metacognitive
control

Metacognitive
monitoring

Metacognitive 
knowledge

Metacognitive 
experiences

(e.g., self-awareness, 
confidence and its adjustment)

(e.g., task decomposition, 
metacognitive flexibility)

(e.g., known abilities, 
strategies, beliefs)

(e.g., feeling of familiarity, 
‘processing fluency’)

Task-specific, 
cognitive demands 

(object level)

Metacognitive ‘abilities’

Metacognitive ‘information’

Figure 1: A simplified descriptive framework for metacognition. Metacognitive knowledge is the explicit understanding of
one’s abilities, strategies, and beliefs. Metacognitive experiences include things that people can directly experience, such as a
feeling of familiarity or other implicit cues that provide information about cognitive processes. Metacognitive knowledge and
experiences are interrelated in that experiences can become encoded as knowledge, and knowledge can be retrieved during
experiences (§2.3). Both of these can influence (and be influenced by) metacognitive monitoring, which includes self-awareness,
and confidence and its adjustment. Metacognitive monitoring, in turn, influences (and is influenced by) metacognitive control
processes, such as metacognitive flexibility and task decomposition. Metacognitive control acts upon the (object-level) cognitive
processes involved in a task. Arrows indicate directions of influence (§2.3).

experiences (thereby also making them less implicit) [212]. Thus,
there is a tight interrelationship between metacognitive knowledge
and experiences, and monitoring and control.3

2.4 Domain generality and specificity of
metacognition

Whether metacognitive abilities, knowledge, and experiences are
domain-general (universally applicable across different areas of
knowledge, skills, or problem-solving) or domain-specific (pertain
to a particular area of expertise to which they are finely tuned, such
as math) is a matter of active debate, although there is evidence
for both views [11, 44, 68, 118, 151]. What kind of metacognition a
situation demands is likely context-dependent [44, 55], a particu-
larly relevant consideration for GenAI given its generality across
domains [157].

2.5 Heuristics and priming metacognition
People often implicitly and unintentionally rely on heuristics to
guide their metacognitive monitoring and control [3]. For example,
people guide their metacognitive control by implicitly relying on
the ease of information processing (‘processing fluency’). Informa-
tion that is easily or fluently processed (e.g., in terms of reading)
triggers less further cognitive processing relative to information
that is more difficult to process [3]. Because processing fluency

3Some metacognition theories view metacognitive knowledge and experiences not
as separate from monitoring, but rather as instances of monitoring that can be either
knowledge- or experience- based [4, 93, 128]. However, we distinguish between the two
sets of concepts to emphasize the difference between the ability to monitor and control
cognition, and information about cognition arising from metacognitive knowledge
and experiences—e.g., the difference between the ability to be self-aware about one’s
memory (monitoring) and the information conveyed by a feeling of familiarity (an
experience).

is subjectively experienced rather than consciously known, and
because these heuristics are often activated implicitly, their activa-
tion represents a metacognitive experience [3, 187].4 Manipulating
the activation of these heuristics (e.g., via priming) can be used to
improve metacognitive control: increasing subjective processing
difficulty (e.g., by using a degraded font) stimulates more metacog-
nitive control and thereby improves participants’ performance on
reasoning tasks that benefit from a more analytic processing style
[7]. In §3, we discuss how engaging these heuristics when interact-
ing with GenAI may influence users.

2.6 Improving metacognition
Metacognitive abilities can be taught and improved [45, 52].
Metacognitive interventions, such as training through feedback on
metacognitive performance [30], can, for example, increase judg-
ment accuracy—the ability to distinguish between one’s own cor-
rect and incorrect metacognitive processing. Other interventions
include providing feedback to adjust a person’s mental model for
a specific task [195], and using guided reflection to improve the
ability to discern the reliability of outputs [180]. In §4.1, we discuss
how some of these interventions can be used in practice to meet
the metacognitive demands posed by GenAI.

2.7 Measuring metacognition
Metacognition researchers have devised a range of methods to
measure different metacognitive abilities, both prospectively and
retrospectively. Table 1 summarizes key methods from metacogni-
tion research relevant to exploring interactions with GenAI.

4In contrast, the conscious knowledge of these heuristics exemplifies metacognitive
knowledge.
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Table 1: Overview of some prospective and retrospective methods for exploring relevant metacognitive abilities. Using these
methods to measure the metacognitive demands posed by GenAI and applying them for improving GenAI usability are
promising opportunities for future research (see Table 2 and Table 3).

Ability Type Measure Description

Self-awareness Prospective Think-aloud [59] Users verbalize their thought process during a task.

Prospective Self-report [72] Users report their perceived strengths and weaknesses.

Prospective Prediction log [56] Users predict performance and feelings for an upcoming task.

Retrospective Reflective essay [76] Users describe their thought processes after task completion.

Retrospective Interview [98] Interviews focus on users’ self-perception during or after a task.

Retrospective Assessment rubric [9] Users assess their performance using a predefined rubric.

Confidence Prospective Judgment of learning (JOL) [129] Users predict their performance before a test.

Prospective Self-rating [13] Users rate their confidence in specific skills before a trial or task.
Correlation between confidence and objective accuracy can estimate
confidence calibration [127, 202]; Meta-d’ is a derived metric capturing
users’ prospective confidence resolution independent of their calibration
[66, 115] (see also [65, 145]).

Prospective Likelihood estimate [206] Users estimate the likelihood of success in a future event.

Retrospective Self-Rating [24] Users rate their confidence in their performance after a trial or task.

Retrospective Reflective journals [125] Users reflect and comment on how confident they felt during the task.

Task
decomposition

Prospective Expectancy questionnaire [54] Users set specific goals and plans before a task.

Prospective Self-regulated learning (SRL)
microanalysis [37]

Users respond to prompts assessing strategy use and motivational beliefs.

Prospective Goal-setting worksheet [213] Users fill out a survey about a task’s value and expected success.

Retrospective Performance reviews [162] Users evaluate their self-regulation strategies used in a task.

Retrospective Behavioural observations [140] Recorded task sessions are coded for indicators of self-regulated learning.

Retrospective Reflective interview [98] Interviews explore users’ strategic planning, monitoring, and evaluation.

Metacognitive
flexibility

Prospective Cognitive flexibility scale [117] Users describe how they solve problems in different contexts.

Prospective Task switching [124] Users are tested on their ability to switch between task sets.

Prospective Category fluency [186] Users list examples within categories in a given time.

Retrospective Post-task debrief [168] Interviews about users’ different strategies used and adaptability during
the task.

Retrospective Solution review [86] Users review and discuss the solutions they generated for a task.

Retrospective Error analysis [31] Mistakes made during task performance are analyzed to understand
metacognitive flexibility.

3 THE METACOGNITIVE DEMANDS OF
GENERATIVE AI

As Sarkar et al. [156] notes, programming with GenAI may have
“far-reaching impact on [programmers’] attitudes and practices of
authoring, information foraging, debugging, refactoring, testing, doc-
umentation, code maintenance, learning, and more”. Other domains,
such as design [70], writing [132], and data science [74] are likely
to be experiencing similar changes with GenAI. We suggest that a
core dimension underlying these changes is a greater demand on
users’ metacognition that is imposed when users have to (a) prompt
GenAI systems, (b) evaluate and decide to rely on GenAI output,

and (c) decide on one’s workflow automation strategy: whether they
should automate certain tasks with GenAI and how to automate
them most effectively (previously described as “critical integration”
[154]; see also [149]).

It is important here to distinguish between metacognitive de-
mand—the need for extensive metacognitive monitoring and con-
trol for a task—and cognitive load, the total amount of mental effort
required for a task [178]. Metacognitive demand contributes to
cognitive load, but so do other aspects related to cognitive pro-
cessing at the object (non-meta) level (i.e., metacognitive demand
is sufficient but not necessary for increasing cognitive load). For
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example, as we illustrate below, prompting in current GenAI sys-
tems imposes a high metacognitive demand due to the need for
self-awareness of goals, increasing cognitive load, while the interac-
tion method of typing (rather than speaking) further increases cog-
nitive load, albeit without much associated metacognitive demand.
The relationship between metacognitive demand and cognitive load
becomes relevant when considering interventions to support users’
metacognition (see §4.3).5

This section covers each aspect of working with GenAI systems,
describing how GenAI imposes high metacognitive monitoring and
control demands on users (summarized in Figure 2). Not all GenAI
systems impose the same type and extent of metacognitive demands
due to differences in interface design and interaction modes; where
relevant, we point out the implications of this. Throughout, we
make concrete suggestions on future research to better understand
these demands (summarized in Table 2).

3.1 Prompting generative AI systems
End-user studies suggest that prompting is challenging, with non-
expert users making various errors and adopting ineffective strate-
gies—a reflection of the demand on users’ metacognitive monitoring
and control [33, 41, 43, 85, 103, 174, 205]. During prompt formula-
tion, the open-endedness of many current prompting interfaces
requires users to have self-awareness of their specific task goals,
and be able to decompose their tasks into smaller sub-tasks so as
to verbalize these as effective prompts (Figure 2a). Next, iterative
output evaluation and adjustment (prompt iteration) depends on
users’ confidence in their prompting ability, and metacognitive flex-
ibility to adapt their prompting strategy (Figure 2b). We posit that
these demands are exacerbated by GenAI’s non-determinism and
model flexibility (not to be confused with metacognitive flexibility)
in terms of (a) the wide range of explicit and implicit parameters
that users can adjust, and (b) systems’ ability to work with prompts
at a wide range of abstraction [156, 157].6

3.1.1 Prompt formulation: self-awareness and task decomposition.
In manual task completion, many implicit goals and intentions
embedded within tasks can remain so without ever being verbal-
ized. For example, when writing an email to a senior colleague, one
might implicitly know to adopt a certain tone. Many GenAI sys-
tems require specification that the email is to a senior colleague and
needs an appropriate tone. Moreover, it often requires that a task be
broken up into sub-tasks (“combine my content”, “condense into two
paragraphs”, “update the tone” ). This demand for self-awareness and
task decomposition is exacerbated by a particular type of model
flexibility in GenAI: today’s systems afford many parameters for
end-users to adjust; these can be formal parameters like the model
temperature, or a range of unspecified parameters that can be ad-
justed through text prompting (e.g., the tone, level of detail, or
structure of a piece of text). This model flexibility and control af-
forded to users requires knowing what one wants to achieve and

5For an in-depth theoretical discussion of metacognition (or the overlapping concept
of self-regulated learning) and cognitive load, see [46, 160, 163, 189].
6A popular workaround to the challenge of prompting is ‘prompt libraries’ with de-
tailed, task-specific prompts (see [176] for an overview). While helpful, ready-made
prompts will rarely suit one’s context precisely—the devil remains in the details. More-
over, ready-made prompts still require metacognitive ability to apply appropriately.

convey that explicitly and effectively to the system. Recent user
studies of GenAI systems illustrate these demands.

In [208], non-expert participants used an LLM-based tool to im-
prove a chatbot through prompting. One of the challenges they
experienced was a struggle getting started.7 Zamfirescu-Pereira
et al. [208] interpret this as a design-stage barrier in end-user pro-
gramming, reflecting some version of the implicit question, “I don’t
even know what I want the computer to do”. The self-awareness
and explicitness demanded by prompting is also observed in LLM-
supported writing. Dang et al. [41] define and compare diegetic
prompting (instructions conveyed implicitly when users input text
for the system to modify) and non-diegetic prompting (explicit in-
structions to the system). The latter is experienced as far more
challenging by users as it “forces writers to shift from thinking about
their narrative or argument to thinking about instructions to the
system” [41]. Similar difficulty with non-diegetic prompting was
observed among novice programmers in AI-assisted coding [83],
and manufacturing designers co-creating with GenAI, who strug-
gled to “think through the design problem in advance” [70]. These
difficulties were exacerbated by the many parameters available to
users who grappled with understanding and using them effectively
[70, 83, 204].

The difference between diegetic and non-diegetic prompting
points to the broader question around GenAI system interfaces and
interaction modes and what they imply for the user experience
and for productivity. For example, whereas diegetic prompting is
easier, it affords less control than the alternative, with preferences
differing across users [41]. Moreover, user experience and produc-
tivity may not always go hand in hand. For example, systems with
non-diegetic prompting (e.g., ChatGPT) may be more challenging
and time-consuming, yet the explicitness they require may plausi-
bly act as a forcing function that ultimately trains metacognitive
self-awareness and task decomposition, leading to higher quality
output, assuming users persevere [155].8 Nevertheless, in §4.1 we
suggest that there are more effective and user-friendly ways of
supporting metacognition.

Apropos of training, a key difference between expert and non-
expert programmers—and by extension, expert and non-expert
prompt writers—is an explicit approach to considering task require-
ments [208]. Expert programmers have advanced metacognitive
monitoring and control, in that they are able to identify their specific
goals and decompose them into concrete tasks [60]. One developer
in [103] described their strategy with LLM-supported coding as, “be
incredibly specific with the instructions and write them as precisely as
I would for a stupid collaborator”. Likewise, users in [14] who decom-
posed the programming task into “microtasks”—“well-understood
and well-defined jobs”—were able to work effectively with Copi-
lot (see also [150, 188]). Beyond coding, manufacturing designers
who successfully learned to co-create with GenAI abstracted and
explained the problem to themselves [70].9

7Support getting started is a key user request for GenAI explainability; see §4.2.1.
8The potential discrepancy between user experience and productivity is reminiscent of
that found in education, where the cognitive effort of effective learning is experienced
negatively by students, leading to a divergence between perceptions of the learning
experience and objective learning outcomes.
9As the above quotes suggest, task decomposition can often mean crafting a prompt
as a set of discrete instructions that a system can interpret all at once, but it can also
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Prompt formulation EvaluationManual work Manual work

(whether, when, how to apply GenAI in workflows)
Automation strategy: understanding and adapting workflows 

… …

Self-awareness of task goals
Task decomposition for prompting

Well-adjusted confidence 
in evaluation ability

Self-awareness of applicability and impact of GenAI on workflows 
Well-adjusted confidence in completing task yourself vs. with GenAI

<Automated suggestions>

Prompt 
iteration 

Well-adjusted confidence in prompting ability
Metacognitive flexibility to adapt prompting strategy

Metacognitive flexibility 
to adapt workflow to GenAI

(a)

(b)

(c)

(d) (e)

Figure 2: Metacognitive demands posed by generative AI at each point in a simplified user workflow. Often embedded within
a workflow with manual tasks, users may first need to formulate a prompt, requiring metacognitive abilities including self-
awareness of task goals and task decomposition (a). Systems that provide automated suggestions such as GitHub Copilot
alleviate some of the demands associated with prompting. Depending on the output, iterating on the prompt may be necessary,
which requires well-adjusted confidence in one’s prompting ability and metacognitive flexiblity to adapt prompting strategies
as necessary (b). Likewise, evaluating the output requires well-adjusted confidence in one’s ability to judge its validity (c).
Beyond the local interaction with a GenAI system, there is an overarching demand connected to understanding whether, when,
and how to apply GenAI to one’s workflows—one’s ‘automation strategy’. This requires self-awareness of how GenAI applies
to and affects one’s workflows, and well-adjusted confidence in the ability to complete tasks manually and with GenAI (d).
Finally, it also requires metacognitive flexbility to adapt one’s workflows as necessary (e).

We note that, although self-awareness and task decomposition
are often required to some extent when interacting with GenAI
systems, their pertinence increases as users concretize their usage
intentions (e.g., achieving work or personal goals). For example,
users interacting with GenAI systems for non-specific entertain-
ment or exploration may worry less about their prompting strategy.
At the same time, systems that support users’ metacognition can
help surface or clarify intentions originally hidden from users’ self-
awareness, thereby influencing their initial goals or lack thereof
(see §4.1.2 for details). For example, users ‘playing’ with a system
may be enabled to identify more concrete or diverse forms of play
for them to explore. Thus, our framework of metacognitive de-
mands is applicable to many use-cases. More generally, we do not
assume that users’ intentions and goals (or lack thereof) remain
static during human-AI interaction, and, as per §4.1.2, suggest that
systems can and should help users clarify their intentions and goals.

Future research should systematically examine how self-
awareness and task decomposition ability moderate users’ abil-
ity to control systems across interaction modes (e.g., diegetic vs.
non-diegetic prompting), task contexts (e.g., creating a novel out-
put vs. editing an existing artifact), and domains (e.g., writing vs.
programming).
require step-wise prompting, which can work sequentially to produce the desired
output, or, in some cases, may require manual reassembly of multiple outputs.

3.1.2 Prompt iteration: confidence adjustment and metacognitive
flexibility. After the initial prompt, the next common step is itera-
tion: evaluating the output and adjusting the prompt accordingly
(here we focus on prompting; see §3.2 on evaluating the output).
Alongside maintaining awareness of their task goals, users need to
(Figure 2b):

(a) evaluate the output with respect to their prompt,
(b) adjust their confidence in their prompting ability, to disen-

tangle this from systems’ capabilities (“Is my prompt specific
and clear enough; are system parameters set appropriately; is
system performance generally poor on this task; or is this an
‘unlucky’ probabilistic output?” ),

(c) flexibly adjust their prompting strategy as needed (“Should
I adjust my prompt, adjust an earlier prompt, decom-
pose my tasks into further sub-tasks, re-try with the same
prompt. . . etc.?” ).

The range of possible explanations for a poor output makes confi-
dence adjustment challenging, and the range of possible strategy
adaptations demands high metacognitive flexibility from the user.
This is exacerbated by the non-determinism of GenAI, particularly
when tweaking one aspect of the prompt might unintentionally
change a different aspect of the output [33]. This requires con-
stantly maintaining awareness of one’s task goals in the face of
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ever-changing output, or risk getting derailed from the task by
unexpected output, as some users were in [204].10

It is further exacerbated by a distinct type of model flexibility in
GenAI systems (not to be confused with metacognitive flexibility):
“[generative AI systems] can generate plausible and correct results
for statements at an extremely wide range of abstraction”, which
presents what Sarkar et al. [156] term a ‘fuzzy abstraction match-
ing’ problem—it becomes difficult for users to discern a system’s
capabilities and to match one’s intent and prompting accordingly
(see also [61, 85] for similar conclusions).

Participants in [208] struggled with this (see also [43, 85, 205]).
They were unable to choose the right prompting instructions,
incorrectly expecting human capabilities; in some cases, under-
estimating the system’s capabilities; and insisted on socially ap-
propriate—rather than effective—ways of prompting. Zamfirescu-
Pereira et al. interpret these challenges as stemming from “over-
generalization from limited experience”, and “a social lens that fil-
tered participants’ prompts. . . through expectations originating in
human-human interactions”. From a metacognitive perspective,
over-generalization reflects poorly adjusted confidence; rather than
maintaining an appropriately low confidence (about their own
prompting), and gathering more evidence, participants drew confi-
dent conclusions based on limited evidence. Participants’ insistence
on a social lens may reflect a lack of self-awareness of their prompt-
ing approach, poorly adjusted confidence, and/or inflexibility in
their strategies. To be clear, these challenges partly stem from a
lack of feedback in the system about prompting effectiveness, leav-
ing users to grapple with the fuzzy abstraction matching problem
without support (see also §4.2.1 on explainability). However, that
participants in [208] “avoided effective prompt designs even after
their interviewer encouraged their use and demonstrated their effec-
tiveness” suggests that this is also partly a metacognitive failure to
notice and/or adjust their mental model of the system, signaling
low metacognitive flexibility (see also [70, 204]).

Future research should systematically investigate how differ-
ent aspects of GenAI systems—such as their non-determinism and
model flexibility—impact users’ ability to adjust their confidence in
their prompting ability, flexibly adapt their prompting strategy, and
update their mental model of these systems. For example, this could
examine how the temperature setting of a model influences users’
confidence and its adjustment, or how different levels of abstraction
influence novice users’ prompting strategies.

3.2 Evaluating and relying on generative AI
outputs

Evaluating and relying on AI output requires users to maintain a
well-adjusted confidence in their own domain expertise and ability
to evaluate output (i.e., self-confidence; Figure 2c). The importance
of this metacognitive demand is evidenced in recent research on AI-
assisted decision-making, which finds that users’ self-confidence is
a key determinant of their reliance on AI responses, as discussed in
§3.2.1 below. Confidence in the system’s abilities is also important,
and likely interacts with self-confidence, although here we focus

10The usability challenges of prompting make it a key target for explainability, as per
§4.2.1.

on the latter as it is a metacognitive concept (i.e., an assessment of
one’s cognition via metacognitive monitoring).11

We posit that GenAI exacerbates the demand for a well-adjusted
confidence in output evaluation. In this context, this includes confi-
dence with ‘good’ calibration, meaning the overall confidence of a
user in their output evaluation accurately matches objective perfor-
mance; and with ‘good’ resolution, meaning the user’s confidence
can correctly discriminate a correct output.12 The generative nature
of GenAI—its ‘originality’ [157]—means that many user workflows
will or have shifted from users generating content to evaluating it
[149, 154], as already documented in programming [156] and man-
ufacturing design [70]. Thus, users must maintain a well-adjusted
level of confidence in their own ability to evaluate this output
and not blindly accept generated content. Moreover, GenAI poses
unique challenges to confidence adjustment that we discuss below.

3.2.1 AI output evaluation and reliance: confidence adjustment. Re-
cent work has investigated the role of self-confidence in evaluating
and relying on AI output, although with discriminative models,
rather than GenAI. For example, in AI-assisted decision-making
in chess, participants’ reliance on the AI was only significantly
predicted by their self-confidence, and not by their confidence in
the AI [35]. This dovetails with He et al. [77] who find that poor
performers in a logical reasoning task tend to be overconfident—the
Dunning-Kruger effect—leading to under-reliance on AI (see [182]
for related findings). Lu and Yin [108] show that, in the absence of
AI accuracy information, humans rely on their agreement with AI
as a heuristic for their reliance on it, albeit only when they have a
high self-confidence. Older human-automation interaction studies
demonstrated a similar role for user self-confidence in influencing
reliance on automation [47, 102, 114].

Analogous research in GenAI that explicitly measures and ma-
nipulates user self-confidence is missing, but user studies suggest
a similar key role for well-adjusted confidence in output evalua-
tion and reliance.13 Programmers were reluctant to deeply review
and repair AI-generated code, preferring instead to re-write the
entire code themselves [188]. Similarly, manufacturing designers co-
creating with GenAI were uncertain about how to interpret outputs
and whether users or the system were responsible for addressing
errors [70]. By contrast, programmers who were highly confident
in their own ability actively questioned the AI code assistant when
it produced confusing output [198].

The challenge of output evaluation is present even in interaction
modes without user prompting, such as in GitHub Copilot, which
includes automated suggestions. In fact, such interaction modes
may arguably make output evaluation more challenging due to the
need to infer the intent behind systems’ suggestions [74]. Novices

11Confidence in the system’s abilities is touched upon in §4.2.1 on explainability. Note
also that self-confidence in output evaluation and confidence in the system’s ability
are both distinct from users’ self-confidence in their prompting ability, discussed above
in §3.1. Prompting and output evaluation influence each other as users iterate on their
task.
12The two aspects of confidence can be independent. Having a well-calibrated con-
fidence does not necessarily imply high confidence resolution. One could be well-
calibrated on average (e.g., one’s overall level of confidence matches one’s overall level
of accuracy) but still have poor resolution (i.e., one’s confidence level does not vary
much between correct and incorrect answers)[66].
13Related to output evaluation, confidence and metacognition have also been studied
in the context of phishing detection [29].
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in a domain or in GenAI may be particularly vulnerable, as one
participant commented on long code suggestions: “if you do not
know what you’re doing, it can confuse you more” [142]. Given the
importance of users’ self-confidence for evaluating and relying
on AI outputs, future research should measure and manipulate
self-confidence during user-GenAI interactions across different
interaction modes.

Output evaluation is relevant for many systems, such as search
engines, but several aspects of GenAI pose unique challenges, which
we discuss below: the extensiveness of GenAI’s novel content output,
the relative ease of novel content generation, GenAI’s multiple,
non-intuitive failure modes, and the challenge of obtaining objective
quality measures for adjusting confidence in some workflows.

The extensiveness of GenAI’s novel content output. Whereas
prior research has focused on explicit AI advice or decisions, GenAI
can produce (often extensive) content, such as entire emails, presen-
tations, or software. Evaluating these outputs for quality therefore
becomes far more important and effortful (in terms of cognitive
load) compared to ‘auto-complete’ phrase suggestions or intelli-
gent code completion [156, 157]. How this will affect users’ self-
confidence and AI reliance remains unclear, but metacognition
research suggests that increased effort requirements may discour-
age users from appropriate evaluation [4]. Ackerman [2] found
that people’s internal confidence threshold for solving reasoning
problems decreases as the required effort increases; that is, “when
problems took longer to solve, participants appeared to compromise on
their confidence criterion, and were willing to provide solutions with
less confidence”. Worryingly, this persists even when participants
are given the option to give up and respond “I don’t know” [2].
Likewise, end-user programmers have been reported to “eyeball”
the AI outputs of natural language queries, which some suggest
may deepen the existing over-confidence that such users have in
their programs’ accuracy [156, 169].

Future research should examine how the effort of evaluating
GenAI output (in terms of length or complexity) affects users’ self-
confidence in their output evaluation, the accuracy of their evalua-
tion, and their ultimate reliance on GenAI.

The relative ease of novel content generation. The relative
ease with which GenAI can produce extensive output may also
affect output evaluation and reliance via potentially misleading
cues that people implicitly rely on to update their confidence and
guide their subsequent metacognitive control [4]. One relevant type
of cue—‘processing fluency’, “the subjective ease of with which a
cognitive task is performed” [3, 201]—can influence people’s confi-
dence in information accuracy. For example, answers to various
problems are judged as more correct simply if they are displayed
faster to participants after problem descriptions [185]. It can also
affect people’s confidence in their memory: the ease with which a
memory is retrieved increases participants’ confidence in their later
remembering, even though, objectively, easier retrieval was asso-
ciated with worse future memory performance [16].14 Critically,
this effect extends to technology use: faster online information
search retrieval increases participants’ confidence in their subse-
quent memory of that information, despite no apparent causal

14The influences of processing fluency cues are examples of metacognitive experiences.

relation between the two aspects [172]. The mere use of technol-
ogy, such as online information search, can also inflate people’s
confidence in their knowledge [53, 58, 63].

Analogously, the ability of GenAI systems to quickly and easily
generate extensive content may serve as a cue that misleadingly
increases users’ confidence, not only in the output itself, but also
in their own ability to evaluate it. More importantly, changes in
confidence can affect people’s approach to evaluating GenAI out-
put. By increasing people’s confidence, such cues can affect their
metacognitive control, leading people to decrease the effort they
invest into further deliberate processing, as measured by thinking
time and changes-of-mind [4, 183, 184]. Confidence similarly in-
fluences reliance on external reminders and information-seeking
[22, 49] (see also §3.3.2).

Future research should systematically investigate how aspects
of GenAI output (e.g., the speed at which it’s produced, or its verbal
fluency, in the case of text) can serve as cues that influence users’
confidence in the output and their ability to evaluate it, as well as
the effort they ultimately invest into evaluation.

Multiple, non-intuitive failure modes of GenAI. Users’ con-
fidence and their ability to adjust it may also be challenged by the
fact that GenAI tools can have multiple and often non-intuitive
failure modes [33, 157]. For instance, they can introduce subtle,
non-intuitive errors that a human would not introduce, further
complicating evaluation [156]. As it stands, this requires develop-
ing an expertise and a well-adjusted confidence that is distinct from
existing domain expertise, with, for example, “developers [needing]
to learn new craft practices for debugging” [156]. Moreover, as noted,
GenAI models are non-deterministic [136]. This is arguably a neces-
sary trade-off within current GenAI systems, as it enables diversity
of output [136, 156], yet it exacerbates the challenge of confidence
adjustment, particularly when working iteratively across prompt-
ing and output evaluation (as per §3.1). How confident users should
be in their evaluation ability, and how much effort they should in-
vest in evaluation, partly depends on how much non-determinism
they can expect in the output. Indeed, manufacturing designers
co-creating with GenAI were, “unable to determine whether. . . design
features were intended or caused by algorithmic glitches” [70]. More
broadly, as per §3.1, output failures can be attributed to the user’s
prompt or parameter settings, or the system’s non-determinism or
training data, without an obvious way to disentangle these, further
complicating confidence adjustment, particularly for non-expert
users [157, 197].

Future work should examine how different reasons for output
failures affect users’ ability to appropriately adjust their confidence
in their evaluation ability, and how that influences their evaluation
of and reliance on GenAI output.

Obtaining appropriate measures for confidence adjustment.
Adjusting confidence in output evaluation typically requires ob-
jective measures of performance for comparison (e.g., the number
of errors a user correctly detected in the output), but the quality
of generated content and its uses may be more difficult to evalu-
ate objectively (e.g., consider how one would objectively evaluate
the quality of an LLM-generated email) [87, 99]. The benefits of
generated content may also be diffuse and indirect. For example,
participants co-writing with an LLM found that seeing the LLM’s
suggestions was helpful even when they did not implement them



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Tankelevitch and Kewenig, et al.

[207]. This implies subjectivity in the workflow which, although
valid, makes it challenging to adjust one’s confidence. Even with
use-cases that involve subjectivity, such as creative tasks, users
need to adopt an appropriate reliance strategy, which requires well-
adjusted confidence. For example, given the ease of idea generation
with GenAI, how can users be confident that the ideas generated
by such systems are in fact helpful for their ideation process, rather
than merely feeling like they are helpful?

Future work should develop more varied objective measures of
output quality, and explore how user-provided subjective measures
of quality can support users’ ability to adjust their confidence in
output evaluation (e.g., by considering the self-consistency of their
reports [87]).

3.3 Automation strategy and generative AI
workflows

Beyond the metacognitive demands implied in the local interaction
with GenAI, the generality of GenAI—its applicability to a wide
range of tasks[157]—poses a higher-level question to end-users
about their workflow automation strategy: whether they should
“employ Generative AI, how, and how much is the utility of incor-
porating generated contents compared to conventional approaches”
[34]. Sarkar [154] describes this change as a shift from production
to ‘critical integration’, where “the output of AI systems will need
to be integrated into a wider workflow involving human action”, a
process requiring critical evaluation of outputs. We argue that this
imposes a distinct metacognitive demand on users that must make
these decisions, akin to [149], who make a similar argument for
digital storage and memory. That is, users must have self-awareness
of the applicability and potential impact of using GenAI for their
workflow; well-adjusted confidence in the ability to complete a task
manually versus with GenAI; and metacognitive flexibility in adapt-
ing workflows to GenAI (Figure 2d-e). We first briefly summarize
early evidence on howGenAI is impacting user workflows, and then
discuss the role of metacognition in users’ workflow automation
strategy.

3.3.1 Early impact of generative AI on user workflows. Research
on real-world GenAI workflows, primarily in AI-assisted coding,
suggests that tools like GitHub Copilot alter users’ workflows in
diverse ways [166]. Although many changes may be positive and
related to productivity boosts [40], we focus on the challenges to
illustrate the demand for metacognition. In a sample of undergrad-
uate students with programming experience, working with Copilot
on realistic programming tasks was perceived to be challenging
(although participants still strongly preferred it) [188]. Most rel-
evantly, the generation of a long piece of code, particularly with
errors, required participants to switch between coding, reading,
and debugging, resulting in a high cognitive load (also reported
in [14] and, in the domain of AI-assisted programming education,
in [143]). Some users in [14] felt that Copilot was negatively re-
structuring their workflow by “forcing them to jump in to write
code before coming up with a high-level architectural design”. They
also reported writing more and differently worded comments for
Copilot, which they then spent time deleting (unlike comments
intended for humans).

Research in other domains points to similar potential challenges.
Data scientists highlighted workflow integration as a key lever
of control that determined the usefulness of AI assistance [119].
Writing workflows also substantially change with ChatGPT, with
user time shifting from rough-drafting to editing [132], although
the usability challenges that this brings remain to be explored.

Increased switching costs between automated and manual tasks,
and automation-related restructuring of tasks in often unproductive
ways have been studied in the human-automation interaction field
for decades as the “ironies of automation” [12, 166]. Automated
system design has adhered to best practices in human factors en-
gineering to mitigate the impact of these challenges in specific
contexts, such as driving. However, current GenAI systems present
two key differences: they are applicable to a wide range of tasks
(‘generality’ [157]), and as a result, they are also widely available
to users with different levels of domain expertise, system training,
and workflow standardization, in line with broader automation
trends [82]. Thus, current systems shift the task of managing one’s
automation strategy to the user, who may lack expertise or training,
leaving them to manage their attention and re-structured work-
flows as they see fit—a distinct metacognitive demand of GenAI.
Broadly, these changes pertain to understanding and then adapting
one’s workflows. We discuss each of these below.

3.3.2 Understanding one’s workflows: self-awareness and confidence
adjustment. One key question that pertains to users’ automation
strategy is whether to automate a certain task. Inappropriate re-
liance on GenAI may result in lost productivity, increased risk of
errors, or potential de-skilling [23]. Users must therefore have self-
awareness of the applicability of GenAI for their workflow, and
well-adjusted confidence in their ability to complete the task man-
ually versus with GenAI [156] (Figure 2d). Put simply, it requires
answering a version of the following questions: do I know whether
an available GenAI system can help my workflow; do I know how
to work with it effectively in the context of my workflow; and how
confident am I in this knowledge? [114]. In end-user programming,
this is known as the ‘attention investment’ problem, in which users
must conduct a cost-benefit analysis to decide whether the potential
attention costs saved from programming a manual task outweigh
the attention costs of implementing the program [20].

Early research suggests that some users, particularly novices
in GenAI and/or the task domain, lack sufficient self-awareness
and well-adjusted confidence for working effectively with GenAI
systems. For example, programming students in [143] repeatedly
spent time editing Copilot suggestions before abandoning them
and moving on, or tried to coerce Copilot to provide a correct
suggestion, two unproductive interaction patterns that suggest
potential over-reliance on GenAI. Similarly, some less experienced
programmers in [14] were particularly excited about Copilot and
would over-rely on it before manually attempting any of the tasks
themselves. When compared with the relative absence of such
interactions among experienced developers (e.g., [14, 188]), these
interaction patterns illustrate a potential lack of metacognitive self-
awareness and confidence in managing one’s workflows. However,
Kazemitabaar et al. [89] found no evidence of over-reliance among
novice programmers when learning programming using GenAI.
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The above reports are limited to short study contexts, focusing
only on programming. Further in-depth research is needed on the
impact of GenAI on realistic workflows, including understanding
the role of user self-awareness and confidence, particularly for
use-cases outside of programming.

Deciding to rely on GenAI is a form of ‘cognitive offloading’—the
use of tools external to the mind (e.g., calendars), to reduce the cog-
nitive demand of a task (e.g., remembering an event) [148]. With
GenAI, although the intent is often (but not always) to produce an
external artefact, many cognitive processes that are traditionally
involved in such production are at least partly ‘offloaded’ to GenAI,
such as ideation, memory retrieval, and reasoning. For example,
although users prompt systems with instructions to generate text,
it’s the systems which often generate ideas, retrieve relevant infor-
mation, and structure it into arguments. Psychological research has
explored how metacognition affects people’s decisions to engage
in cognitive offloading, and can therefore inform our understand-
ing of the metacognitive demands pertinent to users’ automation
strategy [69, 148, 161]. Studies find that people’s self-confidence in
task performance or knowledge is a strong determinant of their use
of external reminders [22, 68, 79], and search for external informa-
tion [49, 158]. That is, a lower self-confidence in one’s abilities is
associated with more cognitive offloading. The above GenAI user
studies demonstrate a similar pattern, where less experienced users
were more likely to show patterns consistent with over-reliance on
tools like Copilot. Critically, studies on cognitive offloading show
that even when accounting for people’s objective performance on
a task, their subjective self-confidence still influences the decision
to engage in cognitive offloading [22, 68].

Future work should explore how subjective self-confidence re-
lates to users’ automation strategies with GenAI, and how users,
particularly novices, can be supported in having increased self-
awareness and a well-adjusted confidence to ensure appropriate
reliance on GenAI (see also §4).

3.3.3 Adapting one’s workflows: metacognitive flexibility. Along-
side self-awareness and confidence, working with GenAI requires
metacognitive flexibility to be able to effectively adapt one’s work-
flow (Figure 2e). For example, users should be able to recognize
when and how the use of GenAI interferes with their workflow,
resulting in a net productivity loss, and adjust accordingly. As dis-
cussed above, the challenges that some Copilot users faced suggest
an under-development of this domain-specific metacognitive abil-
ity. Conversely, emerging evidence suggests that some experienced
users do employ metacognitive flexibility in their workflows with
GenAI. For example, some users with prior Copilot experience
disable it entirely due to excessive disruption to their workflows
[14]. In [103], 26 percent of surveyed programmers cite the dis-
tracting nature of GenAI suggestions, and 38 percent cite the time-
consuming nature of debugging or modifying generated code, as
‘very important’ reasons for avoiding tools like Copilot. Certain
data scientists in [119] similarly expressed skepticism towards AI
assistance, particularly for difficult-to-understand generated code.
Likewise, many manufacturing designers in [70] who struggled
with GenAI ultimately avoided it altogether in their process.

Other users take a more nuanced approach: “‘I turned off auto-
suggest and that made a huge difference. Now I’ll use it when I know

I’m doing something repetitive that it’ll get easily, or if I’m not 100
percent sure what I want to do and I’m curious what it suggests. This
way I get the help without having it interrupt my thoughts with
its suggestions”’ [156]. More broadly, only about 20-30 percent of
Copilot suggestions are accepted by users [211].

This evidence also hints at relevant differences between system
interfaces and interaction modes that should be considered in the
context of metacognitive demands and adapting workflows. Au-
tomated suggestions reflect tighter integration between manual
work and GenAI, and no metacognitive demands associated with
prompting, yet they nevertheless present challenges such as inter-
ruptions. In contrast, prompt-based interactions enable more user
control over workflows but present metacognitive demands (as per
§3.1.1). User-controlled suggestions may be a middle-ground, but
present their own challenges in terms of inferring system intent (as
per §3.2.1). Deciding between these approaches as a user may con-
tribute to the metacognitive demand associated with determining
automation strategy (see also [171]).

This is not to suggest that users’ approaches to workflow adapta-
tion above are necessarily optimal for productivity, but rather that
they reflect self-awareness and confidence in experienced users
about how GenAI impacts their workflow, and the exertion of
metacognitive flexibility in an effort to change this. As Sarkar et al.
[156] conclude, these emerging ad hoc strategies hint at “a new
cognitive burden of constantly evaluating whether the current situa-
tion would benefit from LLM assistance”—a burden that we identify
as distinctly metacognitive. Future work should characterize the
role of metacognitive flexibility in adapting one’s workflows across
different GenAI interfaces and interaction modes.

4 ADDRESSING THE METACOGNITIVE
DEMANDS OF GENERATIVE AI

The metacognitive demands posed by GenAI can be addressed
in two complementary ways: (1) improving users’ metacognition
via metacognitive support strategies that can be integrated into
GenAI systems, and (2) reducing the metacognitive demand of GenAI
systems by designing task-appropriate approaches to explainability
and customizability. The distinction between the two approaches
is not clean-cut, yet helps frame the design space.

Multiple lines of evidence suggest that metacognition can be im-
proved, and that individuals who are supported in specific metacog-
nitive monitoring or control abilities can significantly improve
their performance in metacognitively demanding tasks [45, 52].
This applies across different age groups (from children to adults)
[8, 39, 48], tasks (e.g., lecture comprehension or mathematical rea-
soning) [27, 80, 91, 96], time-scales (i.e., immediately as well as
delayed) [121], and learning settings (i.e., solitary as well as social)
[137]. As such, interventions to improve the metacognition of users
working with GenAI could be one effective way of meeting the
demands of these systems. This includes embedding metacognitive
support strategies—for example, supporting users’ planning and
self-evaluation—directly into GenAI systems. Interventions can be
adapted to the metacognitive abilities and GenAI experience of each
user to provide the appropriate level of support, making productive
use of GenAI’s model flexibility and generality.
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Table 2: Open research questions for understanding the metacognitive demands of GenAI

Area Research questions Example measures of
metacognition

Prompt formulation How does self-awareness and task decomposition ability moderate users’ ability to
control systems across interaction modes (e.g., diegetic vs. non-diegetic prompting),
task contexts (e.g., creating a novel output vs. editing an existing artifact), and
domains (e.g., writing vs. programming)?

Think-aloud, self-report
protocols, SRL microanalysis

Prompt iteration How do different aspects of GenAI systems (e.g., non-determinism, model flexibility)
impact users’ ability to adjust their confidence in their prompting ability and
flexibly adapt their prompting strategy and mental model of GenAI systems?

Prospective self-ratings of
confidence, SRL microanalysis

Output evaluation How does users’ self-confidence in a task domain or with GenAI influence their
output evaluation and reliance across different interaction modes?

Prospective and retrospective
self-ratings of confidence

How does the cognitive load associated with evaluating GenAI outputs (e.g., in
terms of output length or complexity) affect users’ self-confidence, the accuracy of
their evaluation, and their ultimate reliance on AI?

Retrospective self-ratings of
confidence, meta-d’ estimates

How do aspects of GenAI output (e.g., the speed at which it is produced, its verbal
fluency in the case of text) serve as heuristic cues that influence users’ confidence in
the output and their evaluation ability, as well as the amount of effort they invest
into evaluation?

Retrospective self-ratings of
confidence, meta-d’ estimates

How do different reasons for output failures affect users’ ability to adjust their
confidence in their evaluation ability, and how does that influence their strategies
for evaluating and relying on GenAI output?

Prospective judgments of
learning, retrospective reflective
journals

What are useful objective measures of quality for long and/or multidimensional
outputs, and how can user-provided subjective measures of quality support users’
ability to adjust their confidence in output evaluation?

Self-ratings of confidence

Understanding
workflows

How does subjective user confidence and self-awareness in a domain and/or in their
ability to work with GenAI relate to users’ automation strategies with GenAI?

Retrospective self-ratings of
confidence, SRL microanalysis

Adapting workflows What is the role of metacognitive flexibility in adapting one’s workflows across
different GenAI interfaces and interaction modes?

SRL microanalysis

On the other hand, GenAI systems can be designed to reduce
their metacognitive demand. One area ripe for this approach is
explainability. Designing human-centered explainable AI (HCXAI)
has been an important focus in human-AI interaction research
[57, 104, 175], but the model flexibility, generality, and originality
of GenAI systems poses further challenges, as per §3. Yet these
same features of GenAI provide an opportunity to support HCXAI,
particularly when considering it through the lens of metacognition.
Alongside explainability, the customizability of GenAI systems is
another lever to reduce metacognitive demand. Current GenAI sys-
tems provide many parameters to users, both explicitly (as settings),
and implicitly (as prompting strategies). Finding appropriate ways
to surface these can reduce metacognitive demand.

Below, we discuss how to improve users’ metacognition us-
ing three types of metacognitive support strategies that can be
employed in GenAI systems: planning, self-evaluation, and self-
management. After discussing the range of possible strategies for
each kind of metacognitive support, we provide a figure showing
a hypothetical example of how they might be used in a scenario
within an existing GenAI system (analogously to [26]).We then turn
to how systems can be designed to reduce metacognitive demand,
focusing on explainability and customizability. We provide exam-
ples from research on metacognition interventions and existing

prototype studies and suggest opportunities for further research.
Lastly, we briefly discuss the importance of managing the cognitive
load associated with metacognitive interventions.

4.1 Improving user metacognition
4.1.1 Planning. Planning is a task-oriented metacognitive strategy
entailing both the definition of clear goals (i.e., self-awareness) and
devising a comprehensive approach for achieving them by breaking
them down into smaller, manageable steps (i.e., task decomposi-
tion) [21]. Planning-related interventions can support both of these
aspects as users work with GenAI systems.

As discussed below in §4.1.2, self-evaluation interventions can
help users reflect on their task goals and approaches to task de-
composition [74]. However, tasks may nevertheless be complex
or ambiguous, often requiring gathering, organizing, and synthe-
sizing information in a nonlinear manner distinct from the linear
conversational interfaces in most GenAI systems today. For ex-
ample, people can engage in multi-level planning, where hours,
days, and weeks have to be considered simultaneously [6]. More
flexible interfaces can support the crafting of a complex prompting
strategy by enabling open-ended exploration of task goals and the
relationships between them during the planning process. Sensecape
is such an interface for LLMs that uses multilevel abstraction and
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visuo-spatial organization to support exploration and sensemaking
during LLM interactions [173]. Similar systems have been shown
to improve users’ planning and other metacognitive processes [38].
When applied to the prompting and output evaluation process it-
self, these approaches can make users aware of where they are in a
task. They can also help them encode information in personalized
representational schemas [141], which can help users understand
the underlying mechanisms of a GenAI system, its capabilities, and
failure points. Such an understanding can in turn mitigate the risks
of inappropriate evaluation of, and confidence in, AI-generated
output.

Planning-related interventions can also support users directly in
task decomposition, improving prompt effectiveness via more ex-
plicit and discrete instructions. One promising approach is ‘prompt
chaining’, which involves “decomposing an overarching task into a se-
ries of highly targeted sub-tasks, mapping each to a distinct LLM step,
and using the output from one step as an input to the next” [203, 204].
Alongside improving the LLM’s ability to execute complex tasks,
chaining helped participants “think through the task better”, and
thereby make more targeted edits to improve their prompting [204].
Chaining also increased users’ self-awareness of their goals: the
ability to decompose tasks led some participants to create more
generalizable outputs better suited to their broader goals [203].

Planning can also help users address the ‘fuzzy abstraction
matching’ problem [156], that is, translate their goals and inten-
tions into executable actions—a form of externalization where ‘tacit’
knowledge is made into explicit prompts [130]. This can be sup-
ported through feedforward design [34] (as distinct from feedback
[191]): inviting an action and communicating what exactly the user
can expect as a result.15 For example, feedforward can be used to
inform users that a vague, high-level prompt is unlikely to achieve
their task before they submit it. As Vermeulen et al. [191] argue, “the
more complex a system or interaction context gets, the larger the need
will be for elaborate feedforward in order to aid users in achieving
their goals”. Prompt chaining is an example of a sequential feed-
forward approach, surfacing inputs, outputs, and the underlying
prompt structure for users to explore [204]. However, feedforward
information can also increase cognitive load [42], so the right bal-
ance, particularly for complex systems, remains to be explored. The
Prompt Middleware framework uses feedforward at different levels
of complexity to guide users towards effective prompts and scaffold
domain expertise into the process [113].

Figure 3 provides a hypothetical example of a planning-focused
metacognitive intervention that could be implemented in a con-
versational interface such as ChatGPT. Rather than requiring an
entire chain structure with full control over inputs and outputs, the
benefits of chaining could be derived by surfacing a relevant set of
key questions to users in a more accessible format.

4.1.2 Self-evaluation. Self-evaluation involves enabling users to
reflect on their knowledge, strategies, and performance, and their
respective level of confidence in these. Interventions that cue users
to reflect on their goals and strategies via question prompts or
conversational interfaces have been shown to improve outcomes
in the workplace [92, 122, 209], education [51], and other domains
[17, 147]. GenAI systems, with their model flexibility and generality,
15This is also a form of explanation; see §4.2.1.

have the potential to adaptively nudge this kind of self-evaluation
at key moments during user workflows, effectively acting as a coach
or guide for users [78].

Self-evaluation can be used to support effective prompting. For
example, Gmeiner et al. [70] employed human experts to guide
designers during their interaction with GenAI systems; users appre-
ciated critical questions that guided self-evaluation and thought this
improved prompting. Gmeiner et al. suggest that GenAI systems
can proactively offer similar context-aware self-reflection prompts
to support users in thinking through problems. Self-evaluation in-
terventions can rely on a range of design elements to support users
in clarifying their task goals, including temporal aspects (e.g., con-
sidering past tasks or broader project timelines), comparison (e.g.,
with similar tasks), and discovery (e.g., through re-framing tasks)
[17].

Self-evaluation during the output stage can include interventions
that surface previous outputs and ask users to ‘think aloud’ about
their thought processes, promoting self-awareness in ‘real time’
and supporting users in detecting hallucinations in GenAI outputs
[84]. For example, simple textual prompts promoting self-awareness
significantly decreased participants’ susceptibility to incorrect (al-
beit realistic) information [153]. Likewise, self-explanation prompts
improved students’ accuracy in evaluating their own understand-
ing of information [201]. GenAI systems could also probe for and
proactively respond to user uncertainty. Even including a ‘not sure’
option for users auditing LLMs, can enable them “to reflect on the
task specification and the appropriateness of the tests considered”
[146].

Self-evaluation is particularly promising for augmenting GenAI
explainability, where it can help increase users’ receptiveness to
explanations that seek to update their mental models of GenAI
systems [4, 171] (see §4.2.1 for more on explainability). For example,
self-reflection probes can ask users to reflect on their mental model
and associated confidence [97].

GenAI systems also provide opportunity for interactive metacog-
nitive support, encouraging self-evaluation and suggesting adjust-
ments to metacognitive strategies based on context [202]. For in-
stance, systems could interactively guide users through the steps of
a problem rather than simply providing a solution [70]. Indeed, the
success of pair programming often stems from the extensive verbal-
ization between programmers, and resultant self-evaluation, rather
than the division of labor [75]. Interactions with GenAI systems
could replicate this with a similar level of reflective depth. Enabling
users to critically evaluate AI outputs can build self-awareness by
forcing users to rationalize their decisions to the GenAI system
[156], enhance metacognitive flexibility by providing users with
different perspectives on their task [15], and adjust confidence by
adapting explanations to the users’ needs and the models’ con-
fidence [110]. Moreover, it can also provide critical feedback to
GenAI systems themselves.

However, there are also potential pitfalls in interactivity. As per
§3.2, processing fluency can lead to inflated confidence without
necessarily improving objective accuracy. The design of intuitive
interfaces for GenAI systems might therefore inadvertently give
users a misleading sense of competence, increasing the risk of er-
rors (likewise discussed in cognitive psychology [153]). Designers
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Sure! Before I suggest a draft, here are a few things to consider: 

Content: alongside a clear statement of 
resignation with the position and date, such 
emails usually include: 
• something about your positive experience 

at the company
• your plans for a smooth handover
• a note of personal gratitude

Is there anything else you want included?
 

Tone: such emails should be formal. Are there 
any other specifications related to the tone 
that you want included?

Length: roughly how long should it be? 

For example:
• Things you achieved
• Things you learned
• Your manager’s style
• Your team
You can provide details:

X

For example:
• Project timelines
• People to meet with
You can provide details:

X

Skip to suggested draft

The task is 
automatically 
decomposed 
into suggested 
sub-tasks

Sub-tasks 
offer proactive 
prompts to 
support self-
awareness

Users are offered option to 
skip task decomposition

Prompts 
encouraging 
self-awareness

I want to write an email to my manager about leaving the company. Draft me the email.

Figure 3: Hypothetical example of a planning-focused metacognitive intervention built into ChatGPT. After the user specifies a
task, the system automatically comes up with a decomposed, step-by-step guide for completion (left side of the figure). This
could be aided by further proactive prompting, giving concrete examples of how sub-tasks could be solved (right side of the
figure). An option to skip the decomposition step (bottom of the figure) minimises unnecessary cognitive load if decomposition
is not required.

therefore need to carefully consider how to improve processing flu-
ency without leading to overconfidence, for example, by including
periodic checks that challenge users’ assumptions or solutions [94].
This speaks to ‘seamful’ design, which leads users to pause or reflect
on their engagement with technology by emphasizing “configura-
bility, user appropriation, and revelation of complexity, ambiguity or
inconsistency” [81, 155, 196].

Figure 4 provides a hypothetical example of a metacognitive in-
tervention focused on self-evaluation. To support effective prompt-
ing, the user’s prior history is leveraged to provide personalized
suggestions to improve a generic prompt in this case, and poten-
tially teach the user to include more detail in future prompting.

4.1.3 Self-management. Self-management involves the strategic
management of variables like time, setting, and workflow, and is
therefore an important focus for metacognitive support strategies
for GenAI users. These considerations are not just arbitrary choices
but can be informed by a blend of user telemetry trends and explicit
user requests. By developing systems that are context-aware, users
can be served AI-generated content or prompts at opportune mo-
ments during their workflows [74]. For example, coding assistance
systems can detect when a user is in a state of flow (‘acceleration’)
or problem-solving (‘exploration’), adapting code suggestions ac-
cordingly and providing feedback to the user [14]. Likewise, during
highly sensitive tasks or crucial time periods, the system could
trigger heightened user engagement or display more salient re-
minders to critically evaluate the AI-generated output, promoting
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Previously, when you’ve requested 
summaries of similarly long text, you 
then provided an average of 15 follow-
up prompts. 

To save time, consider asking more 
specific questions up front, or indicating 
what you want the focus of the summary 
to be. 

X

See examples

Previously, when you’ve requested 
drafts with a similar prompt, you 
spent an average of 45 minutes 
editing it. 

Consider providing an outline and 
some specifications first to see if that 
helps save you time later.

X

See examples

2023-Strategy-Document

(a)

(b)

Figure 4: Hypothetical example of a metacognitive intervention focused on self-evaluation built into Microsoft Copilot. In
(A), the user provides a highly unspecified prompt to the system for writing a proposal. Based on a neutral assessment of
similar prompting history, the GenAI system suggests reducing editing time by reflecting on more strategies. In (B) the user
provides a highly unspecified prompt for summarizing. Based on a neutral assessment of previous interactions, the GenAI
system suggests to limit interactions by suggesting to reflect on the user’s more specific goals and intentions for this summary.
These appear as suggestions next to the main chat window and can be closed if not wanted.

self-awareness and adjustment of confidence in output. Another
approach is designing the complexity of AI-generated content ac-
cording to the cognitive load experienced by the user [177]. This
could involve dynamic adaptations, such as recognizing implicit
intent [34], providing summaries when the user is overwhelmed,
or escalating the complexity when the user demonstrates high pro-
ficiency and engagement. Supporting self-management efficiently
also depends on task demands [74]. For example, [1] and [164] sug-
gest that in the context of solving logical puzzles, intelligent tutors
should offer backwards-oriented workflows (e.g., using prompts
to encourage thinking about the negation of the actual solution),
rather than focusing on forward-oriented workflows. In a data sci-
ence context, Gu et al. [74] propose that GenAI tools can offer “a
‘think’ mode for specific planning suggestions, a ‘reflection’ mode for
connecting decisions and highlighting potential missed steps, and an
‘exploration’ mode for higher-level planning suggestions”.

Deciding when to present any GenAI support is another design
choice affecting self-management. In AI-assisted decision-making,
Steyvers and Kumar [171] distinguish between AI support provi-
sion that is on-demand (user-requested) and sequential (occurring
after a user makes an independent decision), among others. Apart
from facilitating engagement at opportune moments, the sequen-
tial paradigm is presumed to encourage independent reflection by
the user. Park et al. [138] similarly argue that “slower” interfaces
especially enable these benefits, as the waiting time often gets used
for reflective thinking about the task at hand (see also [147]). Alter-
natively, workflows can be more dynamic. For example, pathology
requires highly specialized, moment-to-moment judgments; in this
context, the user capability to control and modify search algorithms
on-the-fly can be particularly beneficial [28].

Figure 5 provides a hypothetical example of a metacognitive in-
tervention focused on self-management and self-evaluation. During
coding, a system might encourage the user to reflect on whether
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all relevant parameters are included, check on whether complex
code is understood (especially useful if code has been imported
from other sources and may impact critical aspects of operation),
or the broader work context. Critically, it offers options to ignore
the suggestion, schedule it for later, or change proficiency settings
(i.e., self-confidence).

4.2 Reducing metacognitive demands
In addition to improving users’ metacognition during their inter-
action with GenAI, systems should be designed to reduce their
metacognitive demands. Target areas for this include the explain-
ability and customizability of GenAI systems.

4.2.1 Explainability. We adhere to the definition of explainability
as that which enables “people’s understanding of the AI to achieve
their goals” [174]. To this point, §3 demonstrated how users strug-
gled to understand GenAI systems and achieve their goals due to
GenAI’s metacognitive demands. We focus on those using GenAI
systems as tools in their workflow (in contrast to, e.g., those en-
gaging solely with GenAI system outputs, or overseeing regulatory
aspects), in line with the context-specificity of explainability advo-
cated by research on HCXAI [57, 104, 175].

From the perspective of metacognitive demand, by providing con-
textual and performance information alongside the system inputs
and outputs, explainability should help partly offload metacognitive
processing from users’ minds and onto the system interface. As we
illustrate below, explainability approaches can surface the infor-
mation necessary for adjusting confidence in prompting, output
evaluation, and automation strategy. Moreover, by providing action-
able information, explainability can enable users’ self-awareness
and metacognitive flexibility [116].16

Explainability for GenAI systems should help users adjust their
confidence in their ability to prompt, evaluate outputs, and deter-
mine their automation strategy, particularly given the multiple,
non-intuitive failure modes common to GenAI systems, and other
challenges [104]. For example, explanations that map each aspect
of an output to aspects of the prompt (e.g., using attention visual-
ization [179]), and compare this to examples of effective prompts
[25, 85], can help users disentangle issues with their prompt from
those stemming from model performance, thereby supporting con-
fidence adjustment for prompting ability. Likewise, ‘co-auditing’ a
GenAI system by revealing the model’s step-by-step actions (e.g., in
spreadsheet software [105]) can enable users to understand exactly
what’s involved in a longer workflow [71], and help them adjust
their confidence in their evaluation ability. For example, an explana-
tion that introduces domain concepts or terminology unfamiliar to
users can signal insufficient domain expertise to evaluate this out-
put [165], and prompt further explanation. Finally, indicating model
uncertainty [19, 174, 198], for example, by means of color-coding
[167], and an explanation for that uncertainty [5, 190], can also
help users disentangle the role of their prompting and output eval-
uation ability from that of models’ capabilities, further supporting
confidence adjustment [197].

16In this sense, explainability can also be viewed as a metacognitive support strategy
as per §4.1.

The broader user workflow that encompasses the local inter-
action with GenAI constitutes an important usage context for ex-
plainability (see also [99, 174]). To this end, global explanations
about model capabilities for a given task can help users adjust their
confidence in their ability to complete the task manually versus
with GenAI support (i.e., determining their automation strategy)
[85]. Indeed, for AI-assisted coding, users requested information
about overall output quality and runtime performance [174].

Explainability can also reduce the metacognitive demand for user
self-awareness and metacognitive flexibility. For example, explana-
tions about effective prompting strategies for a given task—most
frequently requested by users in a GenAI-assisted coding system
[174]—can help users translate their goals into actionable prompts
or flexibly adjust their prompts (which can equally be viewed as
supporting their metacognitive abilities, as in feedforward design
[191]). Moreover, granular model uncertainty estimates, such as
line-level highlighting of generated code, can support users in pri-
oritizing their output evaluation [190, 198, 199], thereby enabling
metacognitive flexibility. In sum, these approaches to explainabil-
ity all aim to reduce the metacognitive demand of GenAI systems,
enabling users to take concrete actions, including ‘mental state’
actions (e.g., confidence adjustment), system interactions (e.g., up-
dating prompts), or actions external to the system (e.g., completing
a task without GenAI) [116].

As suggested in §4.1.2, the above explainability approaches can
be augmented via metacognitive self-evaluation interventions that
encourage self-awareness. GenAI offers a unique opportunity to
further augment these interventions through interactivity, as advo-
cated in recent work [10, 100, 101, 123, 192], including for GenAI
specifically [174]. Interactivity could be especially important for
GenAI explainability, as due to GenAI’s model flexibility, generality,
and originality, users’ explanation needs will be as diverse as their
use-cases, outputs, and metacognitive abilities.

4.2.2 System customizability. The question of howmuch control to
give users—system customizability, or how many ‘knobs’ a user can
adjust—is another design choice that can moderate the metacogni-
tive demands of GenAI [42, 119].

On one hand, increasing customizability can increase the demand
for self-awareness (e.g., “are any of the settings relevant to my task?” ),
well-adjusted confidence (e.g., “did any of the settings affect the
output quality, or is it related tomy prompting?” ), task decomposition
(e.g., “what is the right order to adjust settings for each of my sub-
tasks?” ), and metacognitive flexibility (e.g., “which settings should I
adjust to improve my output, if any?” ). This may increase cognitive
load, particularly for novice users. Indeed, in Perry et al. [139], half
of the users did not adjust any model parameters, even though
many produced insecure code using an AI assistant. To this end,
the Prompt Middleware framework aims to reduce the demand
to craft prompts from scratch, enabling users to choose limited
customizability [113].

On the other hand, increased customizability can support
metacognition, particularly for more advanced users. For exam-
ple, consider the temperature setting, which determines the extent
of non-determinism in GenAI outputs, and therefore the likelihood
of hallucinations. Allowing users to change this setting can support
more flexible and self-aware problem-solving in experienced users,
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Change proficiency settingsReview later

Review laterJump to areas

Self-evaluative prompts 
encourage reflection

Option to explicitly set 
self-confidence level

Option to schedule 
evaluation for later

Prompting user about 
broader work context

Any other parameters you 
wanted to specify?

X

Type here or modify the main prompt

Anything here you’re not sure 
about? 

X

Ask here or highlight the relevant code

There are other areas where 
this code may be relevant 

X

Figure 5: Hypothetical example illustrating a metacognitive intervention focused on self-management and self-evaluation for
coding in GitHub Copilot. During programming, the system can provide self-evaluation prompts to encourage user reflection
on bugs and purpose of the code (right side of the figure). To decrease cognitive load if evaluation is not wanted, the user has
the option to schedule evaluation for later, or set their own confidence level to increase or decrease the amount of suggestions
(the ‘proficiency settings’ in the bottom right of the figure). The system could also prompt the user to think about the broader
work context, for example whether this code-snippet may be relevant somewhere else in the overall code as well. The user has
the options to ignore this suggestion, look at the other relevant areas now, or review them later (bottom left of the figure).
To minimize cognitive load, the timing and frequency of prompts should be adapted to the users’ preferences, expertise, and
workflow.

by presenting them with different and perhaps surprising perspec-
tives [139]. Allowing users to find a task-appropriate temperature
setting that keeps the right balance between diversity and factuality
of output, or constraining factuality in different ways (i.e., through
automated post-processing and deterministic fact-checking) could
therefore enable metacognitive flexibility and self-awareness. Cus-
tomization may therefore increase users’ trust in and satisfaction
with output [135].

Other settings include the size of the shortlist from which output
is sampled, as well as the size of the output itself. Increasing the size
of the output window may demand better-adjusted confidence to
evaluate and integrate more information. However, it can also sup-
port metacognition—by adjusting these parameters, users can work
on understanding which part of the output should be used and how,
potentially also increasing explainability. Initial self-reports such
as [152] suggest that in order to find the optimal system settings
for a task, users enter an interactive feedback loop with models,
in which they clearly have to formulate their goals (promoting
self-awareness), adjust their confidence in output evaluation, and
flexibly adapt their workflow.

Where the balance lies between too much and not enough cus-
tomizability needs exploring [34, 197]. Combining increased cus-
tomizability with metacognitive support strategies (e.g., planning,
self-evaluation, self-management) is a promising direction for fur-
ther research.

4.3 Managing cognitive load while addressing
metacognitive demands

There is a risk that strategies to address metacognitive demands
may also increase cognitive load, due to the additional information
that users have to process, such as self-reflective prompts, a set
of sub-goals resulting from task decomposition, or model explana-
tions [46]. The relationship between metacognition and cognitive
load is an active research area [46, 163, 193, 194], but it is plausible
that, although cognitive load may increase due to the processing
requirements of many metacognitive support interventions, the
improvement in metacognition may be accompanied by a simul-
taneous and larger reduction in cognitive load, resulting in a net
decrease in cognitive load. Some studies show that metacognitive
support does not increase overall cognitive load [109, 210] (see also



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Tankelevitch and Kewenig, et al.

Table 3: Open research questions for addressing the metacognitive demands of GenAI

Area Research questions Suggested approaches

Supporting users’
metacognition

How can GenAI systems increase users’ self-awareness and task
decomposition during prompting?

Explore self-reflection prompts, task decomposition support,
open-ended exploration, feedforward design, and other
planning interventions.

How can GenAI systems incorporate self-evaluation
interventions to support users in increasing their
self-awareness and adjusting their confidence? Does this affect
their automation strategy?

Explore proactive probing of users’ uncertainty, prompting
users to self-explain and reflect interactively, and outputting
systems’ confidence.

How can GenAI systems incorporate self-management
interventions to support users in determining their automation
strategy and improving their self-regulation and metacognitive
flexibility?

Explore automated task decomposition, detection of users’
states, dynamic adaptation of output complexity, and
prompting towards more structured and interactive usage of
GenAI.

Reducing
metacognitive demand

How can explainability reduce the metacognitive demand of
GenAI, and what is the impact of interactive explanations?

Explore impact of surfacing interactive output explanations
at different levels of complexity.

How can understanding users’ metacognitive abilities when
working with GenAI systems advance approaches to
explainability and updating of mental models?

Monitor metacognitive abilities during GenAI interactions
and explore whether metacognitive interventions improve
mental model updating.

What is the optimal balance for GenAI system customizability
to reduce the metacognitive demand, and how can it be
combined with metacognitive support strategies?

Explore different levels of customizability across tasks and
user proficiency levels, and their impact on task performance
and metacognition.

Managing cognitive
load while addressing
metacognitive demands

How do metacognitive interventions affect cognitive load as
users learn to interact with GenAI systems over time, and how
should interventions optimally adapt or fade out?

Explore reducing or otherwise adapting interventions at
different timescales as metacognitive proficiency and task
performance increases.

What are other ways to optimize the balance between
addressing metacognitive demands and overall cognitive load?

Explore context-appropriate gamification of metacognitive
interventions.

[194]). Most importantly, we hypothesize that improved metacog-
nition should result in a net improvement in output quality.

Likewise, we propose that explainability, by partly offloading
metacognitive processing from users and onto the system, should
reduce the cognitive load associated with metacognitive monitoring
and control. However, it may increase the cognitive load associ-
ated with processing explanations [46]. To the latter point, some
interactive explanations have been found to increase cognitive load
[18]. Ultimately, however, as users adapt to working with explain-
able GenAI systems, we hypothesize that the result should be a
net reduction in cognitive load [134]. As noted above, system cus-
tomizability involves a similar tension between cognitive load and
metacognition.

Training effects over time may be key, as users may gradually
internalize the metacognitive strategies, explanations, or customiza-
tion settings, and no longer need to rely on external prompts [46].
Accordingly, metacognition-related cognitive load should decrease,
although it is less clear whether cognitive load associated with the
processing of external prompts also sufficiently decreases. To this
point, [133] found that adaptive and gradual fading out of metacog-
nitive prompts produced the largest performance benefits, as it
provided time for students to internalize metacognitive strategies,
while ultimately reducing the cognitive load associated with pro-
cessing now-irrelevant external prompts (see also [134]). The same
might be true for some types of explanations as well (e.g., global
explanations). Future research should study how metacognitive

interventions affect cognitive load as users learn to interact with
GenAI systems over time, and how to optimally adapt or fade out
interventions over time. It is also important to explore other ways
to optimize the balance between addressing metacognitive demand
and overall cognitive load (e.g., through gamification [165]).

Lastly, and perhaps somewhat controversially, we highlight the
value of ‘seamfulness’ in interface design for helping users reflect
on their technology use (as per §4.1.2 and [81, 196]). This idea can
be extended to question the ‘doctrine of simplicity’, which assumes
that interfaces should always be ‘easy’ or ‘natural’ to use [155].
We propose that some potential effort introduced by metacognitive
support strategies and explanations may be justified, so long as
these arewell-designed and act ultimately in the service of improved
metacognition and productivity with GenAI, a technology which
promises to transform personal and professional work [155].

5 CONCLUSION
Russell [50] proposed that being literate in the “Age of Google”
required a kind of ‘meta-literacy’—knowing how to read the search
interface, how to use it effectively, and what is even possible to
search for. Analogously, as we offload more of our cognition to to-
day’s GenAI systems, the demand for our metacognition increases
[149]. Designing truly human-centered GenAI systems [34, 104]
means grappling with these metacognitive demands. Fortunately,
a rich body of metacognition and cutting-edge HCI research can
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kickstart this effort. Equally, interaction with GenAI offers a pow-
erful paradigm for advancing our foundational understanding of
metacognition, paving the way for fruitful inter-disciplinary re-
search. Finally, we reiterate that the perspective of metacognition,
when considered with the unique features of GenAI—model flexibil-
ity, generality, and originality—presents an opportunity to realize
what Alan Kay proposed as a “grand collaboration” with “agents:
computer processes that act as guide, as coach, and as amanuensis”
[88].
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